6-MAR-25

antor: PostgreSQL 16
erformance tunin

- »

£
tanto, Tests .

2 Overviey,

e (0111107265 40
54005 56)

Uountugzz o)

Ntor

Oleg Ivanov

Table of contents

Chapt
er

Tantor: PostgreSQL 16 Performance Tuning

page

1-1

Review

About Tantor

Tantor DBMS

Tantor xData

Tantor PipelineDB

Tantor platform

About the course

General concepts of performance tuning

Performance Tuning Methodology

Performance Tuning Steps

Example of eliminating latency on the application server side

Using the pgbench utility

22

Benchmarking

Benchmarking result

pgbench - PostgreSQL benchmarking utility

Three built-in pgbench tests

pgbench launch options

Recommendations for using pgbench

Example of using pgbench

1-3

Using sysbench and fio utilities

30

sysbench - performance testing utility

Using sysbench to test CPU memory disks

Testing hardware resources

Testing I/0 with Flexible |10 Tester (fio)

1-4

TPC tests

36

TPC tests

TPC-B and TPC-C tests

TPC-E Test Network Failure Resilience Test

Implementation of TPC-C test

HammerDB Application

Parameters for HammerDB Type-C test

Go-TPC Utility

Practice

2-1

Memory

44

RAM

Virtual memory addressing

Memory page size

Translation Lookaside Buffer (TLB) Size

Huge Pages

Using Huge Pages

Using Huge Pages Instance

Transparent Huge Pages

Non-Uniform Memory Access (NUMA)

2-2

Out of memory

56

Out of Memory (OOM)

Resident Set Size (RSS)

oom_score_adj parameter

vm.overcommit_memory parameter

Setting overcommit and swap values

vm.swappiness parameter

Memory Page Deduplication (KSM)

Local memory allocation by instance processes

ERROR : invalid memory alloc request size

enable _large allocations parameter

2-3

Page cache

69

Linux Page Cache

Percentage of modified ("dirty") pages in cache

Memory fragmentation

Memory defragmentation

Duration of retention of dirty pages in cache

backend flush_after parameter

Practice

3-1

Processors

77

Simultaneous Multi-Threading (SMT) and Hyper-Threading (HT)

Process affinity (CPU affinity)

Viewing the list of processes using the ps utility

Recording and viewing metrics with the atop utility

Switching execution context

Operating system scheduler

CPU usage (USER/SYS ratio)

Time source

Comparison of time sources

Comparing Time Sources in PostgreSQL

Replacing the time source

3-2

Net

91

Basic network parameters

Congestion and slow start algorithms

BBR (Bottleneck Bandwidth and Round Trip Time) Algorithm

Network connection parameters

Energy saving parameters

Practice

Storage system

98

Disk subsystem

HDD SSD NVMe

Block devices

I/O Scheduler

Changing the 1/0 Scheduler

Physical sector of the disk

Interaction of instance processes with disk

Synchronizing data files with disk

File system block size

wal_sync_method parameter

WAL write guarantee

Fast commits of changes in the ext4 file system journal (fast commit)

Enabling fast_commit

pg_test fsync utility

Group commit transactions

commit_delay and commit_siblings parameters

I/0 bus commands discard/trim

Discard/trim support

Recommendations for using SSD

max_files_per_process parameter

Increasing the value of max files per process

Temporary File System (tmpfs)

RAID

LVM

Practice

Initial setup of DBMS 127
Configurators

Parameters shared_buffers temp_buffers effective_cache_size

Parameters work_mem hash_mem_multiplier maintenance_work_mem

autovacuum_work_mem parameter

temp _file limit and temp_tablespaces parameters

Parameters max_slot wal keep size and transaction_timeout

Parameters max_connections and client_connection_check interval

max_locks_per_transaction parameter

Background Work Processes

max_worker _processes and max_parallel workers parameters

Parameter max_parallel_ workers_per_gather

Storage system parameters

Checkpoint parameters

bgwriter background writer process parameters

Practice

Storage structures 144
Tables

Service columns

pageinspect extension

Padding and alighing

Alignment

cache line

Data block structure

Number of rows in a block

The order of columns in a table

Column Order and Performance

Practice

btree indexes 158

String Access Methods

Operator class for index

Families and classes of operators

Support functions for the index

Indexes for integrity constraints

btree index

btree pageinspect extension functions

Indexes with deduplication in leaf blocks

Check if deduplication is supported

Index creation parameters and their impact on performance

Partial indexes

Evolution of indexes: creation, deletion, rebuilding

Structure of btree index

High key in index structure

Changing index structure when adding rows

Example of index growth when inserting rows

The structure of the index after its rebuilding

FILLFACTOR in btree indexes

Fastpath for inserting into indexes

In-page cleaning in indexes

Impact of Row Deletion on Indexes

Excluding blocks from the index structure

Number of blocks excluded from the index structure

Practice

8-1

TOAST

186

TOAST (The Oversized-Attribute Storage Technique)

Variable length fields

Field displacement in TOAST

Field displacement algorithm in TOAST

Toast chunk

TOAST Limitations

Aligning Rows with TOAST-Erased Fields

toast tuple target and default_toast compression parameters

Heap Only Tuple Optimization

HOT update monitoring

Impact of FILLFACTOR on HOT cleanup

In-page clearing in tables

In-page cleaning in indexes

8-2

Data types

201

Smallest data types: boolean char smallint

Variable Length Data Types

Integer data types

Selecting data types for the primary key

The cache parameter for sequences

Storing dates, times, and their intervals

Functions for checking data type and field size

Data types for real numbers

Configuration parameter extra_float digits

Storing real numbers

Digit width of division result numeric

Practice

9-1

Architecture

214

Starting an instance, postgres process

Startup process

synchronization , parameter recovery_init sync_method

Backup synchronization, pg_basebackup --sync-method parameter

Parameter restart_after crash

Features of running an instance in a docker container

What happens when a server process starts

Shared memory of instance processes

System Catalog Table Cache

View pg_stat_slru

Local process memory

pg backend memory contexts view

Function pg _log backend memory contexts(PID)

9-2

Blockages

229

Types of locks

Parameters deadlock_timeout and log_lock waits

lock_timeout parameter

Subtransactions

Multitransactions

Fastpath blocking

Strong and weak table locks

Directory of command-set locks

Sections of the lock table

Tranches of blockings

Lightweight locks

Fast Path Blocking and 16 Blocks

Section Join Indexes and Fast Path

join_collapse_limit parameter

pg_locks view

The track_commit_timestamp parameter

Practice

10

Buffer cache

250

Memory structures serving the buffer cache

Memory structures serving the buffer cache (continued)

Search for a free buffer

Dirty Buffer Eviction Algorithm

Buffer Replacement Strategies

Finding a block in the buffer cache

Pinning the buffer (pin) and locking content lock

Freeing buffers when deleting files

Optimized file extension

File resizing and buffer cache

Prefetching blocks

pg_stat recovery prefetch view

pg_prewarm extension

bgwriter background writing process

Algorithm for clearing the buffer cache by the bgwriter process

View pg_stat_bgwriter

pg_buffercache extension

Setting the buffer cache size

synchronize_seqscans parameter

Practice

11

Checkpoint

273

Checkpoint

Steps to perform a checkpoint

Checkpoint Execution Steps (continued)

Checkpointer Process Configuration Parameters

Statistics for setting checkpointer parameters

Example of setting checkpointer parameters

Example of setting checkpointer parameters (continued)

Practice

12

Autovacuum

28 2

Vacuuming algorithm

First phase of vacuuming

Calculation of memory for TID for vacuuming

The second and third phases of vacuuming

The fourth and fifth phases of vacuuming

Aggressive vacuum mode

Freezing rows (FREEZE)

Vacuum in PostgreSQL version 17

Comparative testing of vacuum 16 and 17 versions of PostgreSQL

Checksums and WAL

VACUUM command parameters

VACUUM Command Parameters (continued)

pg_vsibility extension

Auto vacuum monitoring

Presentation pg_stat_progress_vacuum

Parameter log_autovacuum_min_duration

Autovacuum configuration parameters

Setting up autovacuum

autovacuum_naptime parameter

Selection of tables by autovacuum

Recommendations for setting up autovacuum

The Importance of Monitoring the Database Horizon

Monitoring the database horizon

Autovacuum parameters at table level

default statistics_target parameter

Bloat tables and indexes

Practice

13

Using the diagnostic log

Diagnostic log

Diagnostic parameters

Monitoring temporary file usage

Monitoring the operation of autovacuum and autoanalysis

Monitoring checkpoints

Description of log_checkpoints entries

Description of log_checkpoints entries (continued)

pg_waldump utility and log_checkpoints entries

pg_waldump utility and log_checkpoints entries

Connection frequency diagnostics

Diagnostics of blocking situations

Practice

14

Cumulative statistics

326

Cumulative statistics

pg_test_timing utility

Viewing process statistics

View pg_stat database

Progress of command execution

pg_stat io view

buffers backend fsync and fsyncs statistics

pg_stat io view rows

pg_stat io characteristics

pg_stat io view statistics

Views pg_statio_all tables and pg_statio_all_indexes

pg_stat all tables view

View pg_stat_all_indexes

Database horizon retention duration

View pg_stat wal

pg_walinspect extension

Using the pg_walinspect extension

View pg_stat_activity

Blocking processes and the pg blocking pids() function

pg_cancel backend() and pg_terminate backend()

Practice

15

pg_stat_statements and pg_stat_kcache extensions

348

pg_stat_statements extension

pg_stat statements configuration

pg_stat statements configuration parameters

pg_stat_statements view

Queries against the pg_stat_statements view

Examples of queries for the pg_stat_statements view

Metrics pg_stat_statements

Examples of pg_stat_statements view metrics

pg_stat kcache extension

Statistics collected by pg_stat kcache

View pg_stat kcache statistics

Practice
16 pg_wait_sampling extension 36 2
pg_wait_sampling extension

History of waiting events

History of waiting events (continued)
pg_wait_sampling extension parameters
pg_wait_sampling profile

Queries to the pg wait_sampling profile

Queries to the pg wait_sampling profile (continued)
Reset statistics

Practice

Copyright

The textbook, practical assignments, presentations (hereinafter referred to as documents) are intended for educational purposes.

The documents are protected by copyright and intellectual property laws.

You may copy and print documents for personal use for self-study purposes, as well as for training in training centers and educational
institutions authorized by Tantor Labs LLC. Training centers and educational institutions authorized by Tantor Labs LLC may create training
courses based on the documents and use the documents in training programs with the written permission of Tantor Labs LLC.

You may not use the documents for training employees or others without permission from Tantor Labs LLC. You may not license or
commercially use the documents in whole or in part without permission from Tantor Labs LLC.

For non-commercial use (presentations, reports, articles, books) of information from documents (text, images, commands), keep a link to
the documents.

The text of the documents cannot be changed in any way.

The information contained in the documents may be changed without prior notice and we do not guarantee its accuracy. If you find errors,
copyright infringement, please inform us about it.

Disclaimer of liability for the content of the document, products and services of third parties:

Tantor Labs, LLC and its affiliates are not responsible for and expressly disclaim any warranties of any kind, including loss of income,
whether direct or indirect, special or incidental, arising from the use of the document. Tantor Labs, LLC and its affiliates are not responsible
for any losses, costs or damages arising from the use of the information contained in the document or the use of third-party links, products or
services.

Copyright © 2025, Tantor Labs LLC
Created by : Oleg Ivanov

Created: 6 March 2025
For training questions, please contact: edu@tantorlabs.ru

Qntor

Introduction

Performance tuning

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 2

Review

= The course covers: O
> Linux operating system | Performance
> Configuring an instance ~ \ o ootmmemmeeeeeeeeeoes

= the course does not cover: |
> SQL code setup A !

serving a database cluster o Setingup Linux. |

> optimization of storage T rovtoupet
Stru Ctu reS i I,'_'_'_____'_'_'_'_'_____'_'_'_'_'_'_____'_:I
P Memory [

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 10

Review

Well intended for administrators and developers whose tasks include tuning the performance of
applications running on the PostgreSQL DBMS .

PostgreSQL database cluster consists of a set of files stored in a file system in a directory (the
directory is specified by the PGDATA environment variable). Clients (users) are served by a
computer program called a DBMS. A running program is called a PostgreSQL instance . An instance
serving a database cluster is a set of processes in the operating system and the RAM used by the
processes. The types of hardware resources used by an instance are:

1) " input-output " (disk subsystem, disk, storage system)

2) " memory " (RAM)

3) " processor " (central processor cores)

4) network (network interfaces) .

Resources may be more stressed (scarce) or one resource may become a bottleneck that will
determine the performance of the entire instance.

Instance processes share resources and the bottleneck may be resource starvation . Therefore,
special attention is paid to blocking and resource access wait events.

The instance serves applications in a client-server mode: applications submit SQL commands ,
instance processes execute the SQL commands and return the result.

SQL is a declarative language . This means that SQL commands describe what result you want to get (
"what "), not how to achieve the result (" how "). There may be several ways to execute commands.
For example, a full table scan or an index scan. The methods differ in resource usage. Choosing a
method (plan) for executing SQL commands also relates to performance tuning and is called " SQL
code tuning " (SQL tuning, query performance tuning). To this topic It is worth moving on after tuning
the instance performance and optimizing the data storage structures (tables and indexes), which are
covered in this course.

https://en.wikipedia.org/wiki/Starvation_(computer_science)

About Tantor LLC

= since 2016 on the international market

- Tantor DBMS for government and commercial organizations

= development of the Tantor Monitoring Platform and
management of the PostgreSQL family of DBMS, as well as
Patroni clusters

= many years of experience in operating high-load systems

= is part of the Astra Group of Companies

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

About Tantor

Since 2016, the Tantor team has worked in the international PostgreSQL DBMS support market and
served clients from Europe, North and South America, and the Middle East. The Tantor team developed
the Tantor Platform software and subsequently created the Tantor DBMS, based on the program code
of the freely distributed PostgreSQL DBMS.

In 2021, the company is concentrated its main activities on the design and development of the Tantor
DBMS, as well as the development of the Tantor Platform - a tool for managing and monitoring
databases based on PostgreSQL.

The design and development of products is based on many years of accumulated experience in the
operation of high-load software systems in the public and private sectors.

In 2002, Tantor LLC joined the Astra Group of Companies.

Tantor DBMS

Tantor BE L Tantor SE . | TantorSEIC | Tantor 5 As part of
P P P PipelineDB . i Tantor xData

_ i P 3
‘ New features and ! | Enterprise-level DBMS, | ! DBMS for high loads, ! | Anextension that allows ! ! Maximum version of DBMS, |
. improvements comparedto | : suitable for the most loaded ;| | optimized | 1 continuous data processing | : optimized for working with I1C |
PostgreSQL, | OLTPsystemsorKHDsupto | | and approved for working 1 '
technical support 1 c 100 TB in size b with 1C applications

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 12

Tantor DBMS

Tantor DBMS is a relational database of the PostgreSQL family with increased performance and
stability. It is released in several editions (assemblies): BE, SE, SE1C, Certified . Edition Special Edition
for the most loaded OLTP systems and data warehouses up to 100 TB in size. Special Edition 1C for
"1C" ERP applications .

Technical support, assistance in building architectural solutions, migration from DBMS of other
manufacturers (import substitution) are available for all editions . When purchasing the Tantor DBMS,
a license for the Tantor Platform is provided for managing the acquired DBMS.

Tantor xData

= hardware and software complex with high
performance, fault tolerance, security

= DBaaS capabilities in data centers
enterprises

= Improved automation and backup

= high performance and scalability

= reducing infrastructure and administration
costs

= includes Tantor DBMS and Tantor Platform

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Tantor xData

The Tantor XData hardware and software suite (HSE) delivers large-scale, mission-critical workloads
with high performance and availability. Consolidation of diverse Tantor Special workloads Edition on
XData database machines in enterprise data centers helps organizations improve operational efficiency,
reduce IT administration , and lower costs.

The hardware and software complex (HSC) Tantor XData is designed for migration from foreign
manufacturers' complexes and provides similar load capacity. It is a replacement for highly loaded
DBMSs up to ~50 TB per instance, servicing OLTP -type loads , running on hardware and software
complexes from foreign manufacturers. For DBMSs servicing data warehouses up to ~120 TB per
instance.

It is a replacement for heavy ERP from 1C when migrating from DBMS of foreign manufacturers.
Allows you to consolidate several DBMS in one PAC. Can be used when migrating from SAP to 1C: ERP.

Designed for creating cloud platforms.

An advantage of using xData is the presence of a convenient graphical system for monitoring the
operation of the DBMS: the Tantor Platform.

Tantor PipelineDB

= an extension for the open source Tantor and PostgreSQL DBMS for
continuous execution of SQL queries on data streams with incremental
storage of results in regular tables

= high performance time series aggregation

= Allows you to connect streaming data with historical data for real-time
comparison

= can be used in applications where immediate response is required

= example of a continuous view to display the daily traffic used by the top
ten IP addresses :

CREATE VIEW heavy hitters AS
SELECT day(arrival timestamp) , topk agg (ip , 10 , response_size) t‘o)ntor
FROM requests_stream GROUP BY day

PipelineDB

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 14

Tantor PipelineDB

Tantor PipelineDB is an open source extension for Tantor or PostgreSQL released in 2024. It allows
continuous processing of streaming data with incremental storage of results in tables. Data is
processed in real time using only SQL queries. Has a large number of analytical functions that work with
constantly updated data. Allows you to connect streaming data with historical data for real-time
comparison. Eliminates the need to use traditional ETL (Extract, Transform, Load) logic with CDC (
Change Data Capture). The essence of the extension is described below for those familiar with the
term "CDC" .

Tantor PipelineDB adds support for continuous views. Continuous views are high-refresh materialized
views that are incrementally updated in real-time.

Queries on continuous views instantly return up-to-date results. This makes it possible to use
TantorPipelineDB in the class of applications where immediate response is important .

Examples of creating continuous views:

Continuous view for providing analytical data for the last five minutes :

CREATE VIEW imps WITH (action=materialize, sw = ' 5 minutes ')

AS SELECT count(*), avg (n), max(n) FROM imps_stream ;

By default, the action=materialize parameter ,SOthe action parameter can be omitted
when creating continuous views.

Continuous representation for outputting ninetieth, ninety-fifth, ninety-ninth percentiles response time

CREATE VIEW latency AS

SELECT percentile cont (array[90, 95, 99])

WITHIN GROUP (ORDER BY latency::integer)

FROM latency_ stream ;

Continuous view to display daily traffic used by top ten IP addresses :

CREATE VIEW heavy hitters AS

SELECT day(arrival timestamp) , topk agg (ip , 10 , response_size)
FROM requests_stream GROUP BY day ;
https://tantorlabs.ru/products/pipelinedb

Tantor Platform

= software for managing a large number Platform

of DBMS and Patroni clusters :' Tantor Platform ‘:
- Tantor DBMS and PostgreSQL forks i ,
= PostgreSQL instance performance 4 3

metrics , storing and processing
metrics, performance tuning
recommendations

Slave

——— == - -

Replica
(DBMS)

Master
(DBMS)

N————

= integration with mail systems, directory -
services, messengers

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Tantor Platform

Tantor Platform - software for managing Tantor DBMS , forks PostgreSQL , Patroni clusters . Allows
convenient management of a large number of DBMS. Refers to the class of software products that
includes Oracle Enterprise Manager Cloud Control.

Benefits of using the Tantor Platform : 1. Collection of
PostgreSQL instance performance indicators , storage and processing of indicators, recommendations
for performance tuning
2. Intuitive and functional graphical interface allows you to focus on PostgreSQL instance performance
indicators
3. Automates routine tasks, increasing work efficiency and reducing the likelihood of errors
4. Manages not only the Tantor DBMS, but also other DBMS of the PostgreSQL family
5. Integration with mail systems, directory services, messengers
6. Easy implementation: deploy and put the DBMS under service by the Tantor Platform using Ansible .

Tantor Platform DLH

Tantor Labs also releases the Tantor DLH Platform - software that allows you to organize the process
of transforming and loading data using the Extract logic Transformation Load or Extract Load Transform
in Tantor DBMS for organizing data warehouses and data marts. Belongs to the class of software
products that includes Oracle Data Integrator.

About the course

= In-person or distance learning with an instructor:
> duration 5 days
> starts at 10:00
> lunch break 13:00-14:00
> end before 17:00 (last day before 15:00)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 16

About the course

The course is designed for full-time or distance learning with an instructor. The course consists of a
theoretical part - chapters, practical exercises and breaks. Breaks are combined with practical
exercises that students perform independently on a virtual machine prepared for the course.

Approximate schedule:

1) starts at 10:00

2) Lunch break 13:00-14:00. The start of lunch may shift by half an hour in the range from 12:30 to
13:30, as it usually coincides with the break between chapters.

3) the theoretical part ends before 17:00 (on the last day of the course before 15:00).

The course consists of a theoretical part (chapters) and practical assignments. The duration of the
chapters is approximately 20-40 minutes. The exact time of the beginning of the chapters and the time
for practical assignments is determined by the instructor. The duration of the exercises may vary
among different students and this does not affect the effectiveness of assimilation of the course
material. You can complete the exercises during breaks between chapters or at the end of each day.
The order of the chapters and exercises does not affect the effectiveness of assimilation of the course
material. The completion of assignments is not checked. To successfully assimilate the course material,
it is enough to:

1) listen to the instructor, looking through the text on the slides and under the slide as the instructor
delivers the message

2) ask the instructor questions if internal disagreement arises (questions arise)

3) complete practical tasks and read the text in practical tasks

The course materials include:

1) textbook in pdf format

2) practically t tasks in pdf format

3) virtual machine image in ova format

General concepts of performance tuning

= Performance tuning goals:
> during commissioning, development, application, selection of
equipment
> migrations from another DBMS
> during operation when a decrease in target indicators is detected
= Performance tuning includes:
> targets (metrics) that describe application users® expectations for
service quality. Metrics may be specified in a service level
agreement
> procedures for obtaining indicators (monitoring)
> Performance tuning tools: utilities, extensions, functions, batch files.

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 17

General concepts performance settings

The need for performance tuning arises:

1) when putting a program into operation, developing an application, replacing equipment

2) when migrating from a previous version of the DBMS or a DBMS from another manufacturer

3) during operation, when a decrease in target indicators is detected. In this case, there is a " baseline"
of performance indicators , when the application works without complaints from users of this
application. Baseline indicators define the values of metrics, upon reaching which you can complete the
performance tuning. Baseline indicators help to quickly find out what has changed in the configuration
of the software system due to which the performance has deteriorated.

Performance tuning types:

1) warning, before performance problems arise (proactive)

2) to fix performance issues (reactive)

Performance tuning includes:

1) Service level agreement (SLA): targets (metrics) that describe application users® expectations
regarding the quality of service

2) Daily monitoring of target indicators that determine the quality of service

3) Performance tuning tools: utilities, extensions, functions, batch files.

Source of target indicators:

1) quality of service standards

2) the technical specifications on the basis of which the application was developed or the technical
characteristics of the hardware and software systems or the technical requirements for the program

3) an existing SLA that used when migrating an application from a DBMS of another manufacturer.

The target indicators can be formulated broadly. For example: availability 99% of the time ; 90% of
requests should be executed in 10 seconds or less. The indicators are not directly related to the DBMS
subsystem, whose performance issues prevent the target indicators from being achieved.

Performance Tuning Methodology

- does not depend on the tools used

= includes:
> assessing the application architecture: how the application

interacts with the database

= Errors at the application architecture level create bottlenecks
and define the limits within which performance tuning is
possible

= If changes can be made to the application architecture to
eliminate bottlenecks, then the greatest effect is achieved

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 18

Performance Tuning Methodology

The methodology (sequence of actions) does not depend on the tools used. You can use the Tantor
Platform, PostgreSQL extensions , SQL commands together .

The methodology includes the following steps:

1) Assess the application architecture: how the application interacts with the database. This step is
performed once.

Examples:

a) the application works through caching solutions key-value type (Valkey , Redis), actively uses
temporary tables ;

b) the application has tables in which rows are frequently updated. In PostgreSQL DBMS updates (
UPDATE command) generate stale rows. Inserting rows (INSERT) does not generate stale rows. An
application that primarily inserts rather than updates rows places less load on the DBMS.

c) the application stores data in json format , not in scalar data types ;

d) the application uses asynchronous data processing in the DBMS, and not at the intermediate level
(application server). The PostgreSQL DBMS is served by only one instance, and there can be several
application servers. At the application server level, it is relatively easy to redistribute the load across
several servers.

e) using uuid s rather than integer types as primary keys . Primary keys of type int 4 and int8 are filled
with a monotonically increasing sequence, and uuids are generated randomly (except for those
generated by the uuidv7 () function of the pg_uuidv7 extension available in Tantor 1 6.6) . Inserting
records into the primary key index varies in efficiency.

f) a large number of indexes and table sections that were used before migrating to PostgreSQL from
DBMSs of other manufacturers. Different DBMSs have features that affect performance, and the
optimal number of table sections and the number of indexes per table from a performance point of view
may differ in different DBMSs.

Errors at the application architecture level create bottlenecks and define the limits within which
performance tuning is possible. If changes can be made to the application architecture to eliminate
bottlenecks, then the greatest effect is achieved. For example, transferring long queries to a physical
replica significantly unloads the main DBMS (master , primary) .

Seguence of actions for setting up productivity

= Configuring Database Cluster File Storage =~ ““"""" T
Parameters fotoe! T i, e e —

= checking the instance configuration > R
parameters for compliance with the values e <

recommended by the Tantor Configurator or ="
the Tantor Platform
> Tantor Configurator (e e
http://tantorlabs.ru/pgconfigurator) allows
you to perform initial setup of PostgreSQL
DBMS configuration parameters
- after a test load or during application
operation, check or fine-tune the instance o
configuration parameters

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Performance Tuning Steps

For example, During migration from other types of DBMS, you can reduce the number of sections or
transfer large objects (LOB) not in the similar data type " large objects " (using one table per database
for storage pg largeobject), butin files in the file system or columns of bytea types or text .

2) If you are tuning the performance for the first time or after a significant hardware change, you
should check and tune the operating system. The PostgreSQL instance works with hardware resources
not at a low level (direct I/0O), but through the operating system page cache, and therefore the
operation of the instance is significantly affected by the operating system settings. At this step, you
check for typical problems that are not related to the DBMS: lack of disk space, use of inappropriate file
systems, their mounting parameters .

3) Before setting up the instance, it is worth configure storage structures. If there are storage systems
with different characteristics, then place the PGDATA directories in an optimal way. Storage systems
usually do not change often, have precise characteristics (volume of space, read and write speed,
number of operations per second) and optimization of storage structures is performed once. For
example, the PGDATA/pg wal directory can be placed on a separate file system and create a
tablespace for temporary objects

4) Perform the initial " instance setup " : check whether the instance configuration parameters are set
to values close to optimal. There are hundreds of parameters and they are interconnected: changing
the value of one parameter can shift the optimal range of another parameter. Therefore, the setup is
iterative. In the first iteration, check that the values are set to the recommended values for the planned
load and hardware capabilities. The values can be obtained using the Tantor configurator (
https://tantorlabs.ru/pgconfigurator) , recommendations from the PostgreSQL documentation .
Example: with a large amount of physical memory, set the buffer cache size to about a quarter of the
physical memory.

5) The second iteration of tuning the instance configuration parameters is performed based on the
results of a test load or during the operation of the application. In the second iteration, the parameters
of the instance subsystems are tuned in an order that reduces the likelihood that after tuning some
instance subsystem, you will have to return to what was already tuned.

Seguence of actions for setting up productivity

= defining target indicators, upon reaching which performance
tuning is stopped
= selecting the instance subsystem whose tuning efforts will yield
the greatest effect
> the subsystem that serves the most scarce resource is the
bottleneck
= measurement of performance indicators related to a subsystem
= making changes to configuration parameters related to a
subsystem
> if the indicators have improved, then the changes in the
parameter values were successful
= when the target indicators are reached, the setup is completed

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 20

Performance Tuning Steps

The following steps are performed when using the application.

6) The tuning goals and estimated effort are determined (cost to effect analysis). For example, the
target indicators are determined upon reaching which it is worth stopping performance tuning. The
target indicators can be metrics from the SLA , baseline indicators, parameter values when the
application worked with acceptable performance. After eliminating bottlenecks, performance tuning
usually has a smaller effect.

Troubleshooting and performance tuning slightly different. When troubleshooting problems that may
include performance issues, the degradation in performance is usually abrupt rather than gradual.
Typically, the cause is recent changes made to the system: installing updates, changing the topology
(for example, reducing the number of physical replicas). When searching for problems, delays on the
application server side are excluded, since the cause of the problems may be the application code, not
the DBMS.

7) The area (instance subsystem) with the greatest potential for performance tuning is selected. If
there is a bottleneck, eliminating it will yield the greatest result from the tuning efforts. The bottleneck is
the most scarce resource. For example: CPUs. CPU load is considered high if CPU load is greater than ~
90% (boundary ranges from 85% to 95%). The bottleneck may be locks held longer than the lock type
is expected to hold . For example, lightweight locks must be held for several dozen CPU instructions.
The bottleneck may be contention for access to buffers occupied by table blocks that are frequently
accessed by the application (a " hot " object) .

8) The indicators related to the subsystem are measured ("gather evidence"). The indicators can be
compared with the baseline ones. indicators, or with indicators of similar DBMSs in operation.

9) Changes are made to the subsystem parameters. For example, the autovacuum configuration
parameters are changed.

10) If the target indicators have improved, then continue to increase or decrease the parameter values.
If the indicators have worsened, then stop making changes. If the changes are insignificant, then select
another subsystem. When the target indicators are reached, performance tuning stops.

Example why in 6 The paragraph states " When searching for problems, delays on the application
server side are excluded, since the cause of the problems may be the application code, and not the
DBMS . "

web application developer was load testing a PostgreSQL instance to determine the maximum number
of queries the instance could handle. The queries were simple: SELECT a single row from an index,
similar to the one used by the pgbench utility. With 20,000 " concurrent queries " that the application
sent using a pool of 64 database connections, each " query " took between 4 and 10 seconds to
complete, with an average of 4.56 seconds. Concurrent queries were defined as queries that were
pending from the time the client code sent a request to get a connection from the pool until the row
was retrieved and the connection was returned to the pool. To an end user or the web application load
testing utility , a " client connection " was the time from when a button was clicked on the web page
until the page was rendered . web page (or from the moment a request is sent to the moment a
response is received via the REST protocol). The goal of the test was to determine how many " client
connections " (' concurrent requests ") the application can handle.

A pool of 8,16,32,64,72,96 connections was tested. The developer called " client connections " " the
number of users trying to use the database at the same time ." The developer found that when the
number of users trying to use the database at the same time is small, then a smaller number of
connections (or just one if there are only a few users) works much better . When reaching 10,000 "
simultaneous requests , " a larger number of connections in the connection pool worked better and
resulted in better performance. But only up to a certain number of connections (depending on the
power of the host). For example, on the developer's MacBook with 32GB of RAM, a pool of 64 sessions
gave the best performance. More or less connections resulted in lower performance. The developer
found that changing PostgreSQL configuration parameters such as: shared memory size ,
shared buffers , effective cache size , maintenance work mem ,
checkpoint completion target , wal buffers , random page cost , work mem ,
max_wal size , max worker processes , max parallel workers did not affect the duration
of " queries " and PostgreSQL DBMS worked the same as with the default settings . The developer took
the list of parameters from " reliable " sources. He did not get to using " hints " . The developer was not
an administrator and did not ask the rhetorical question " where is the trace " and did not have time to
connect to any processes with a debugger or even delve into LWLock , which saved him time. The
developer was not from a large company and did not think that he urgently needed " clustering " ,
greenplum , stolon , master-master . The developer came to the reasonable conclusion that the only
thing that helped to cope with the high load was caching with Redis and other means to reduce the
number of requests to the database.

You can't know everything, but you should strive to improve your skills by learning and asking
questions. A developer asked a question on the forum and was given the following recommendation.
Based on the data provided, for each " request " there are 20,000/64 = 312 requests at the same time.
Let's assume that switching connections/contexts in the application server connection pool , sending a
request, waiting for the request result, and returning the results takes 10 milliseconds (0.01 seconds).
This means that on average, requests wait 0.01 * 312 = 3.12 seconds, which corresponds to an average
query execution time (not to the database, but the full query) of 4.56 seconds. This means that the
main delays occur on the application server and the DBMS in its case is not a bottleneck . The DBMS
does not require configuration, which the developer has already seen by changing the configuration
parameters. The developer was also recommended to check whether prepared queries are used.
Prepared queries allow caching the query execution plan in the server process memory and reducing
the planning time. tps=312 is a typical value for simple tests on regular hardware. At 312 queries per
second, the planning time is comparable to the query execution time and, perhaps, using prepared
queries it will be possible to reduce the planning delay, but the expected improvement is not very large,
about 2 times.

Qntor

1-2

Using the pgbench utility

Benchmarking

= Benchmarking is the process of testing the performance of hardware,
software, or an entire system.
> benchmark - criterion, guideline
= The universal indicator is the number of commands per second
(transactions per second , tps), which can be processed by the DBMS
> if a transaction consists of one command, then this indicator is called the
number of queries per second (gps)
> used to compare performance before and after making changes to the
DBMS configuration
= To measure the indicator you need:
> the set of commands that will be executed in a transaction
> tables with data and other objects (indexes, integrity constraints,
sequences) that are needed to execute commands
> the number of sessions in which transactions will be executed in parallel

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Benchmarking

Benchmarking (benchmark - criterion, guideline) is the process of testing the performance of
hardware, software, or the entire system as a whole. In the process of performance tuning,
performance indicators are measured. If you are tuning the performance of an instance as a whole,
which indicator should you use ?

A simple indicator is the number of commands per second (tps) that the DBMS can process . Conditions
can be used when calculating tps . For example, only transactions that were completed in 5 or 20
seconds can be taken into account. Conditions can be absent, in which case commands are sent at
maximum speed. Such a test is called a load test.

If a transaction consists of one command, then this indicator is called the number of queries per
second (gps) . TPS is used to compare the performance before and after changes to the DBMS
configuration. To measure TPS, you need:

1) a set of commands that will be executed in a transaction

2) tables with data and other objects (indexes, integrity constraints, sequences) that are needed to
execute commands

3) the number of sessions in which transactions will be executed in parallel.

tps values to be comparable, the above characteristics must be the same.

For a quick check, testing should be fast and the testing utility should be easy to use. PostgreSQL has
a command line utility pgbench . The utility is extremely easy to use.

To create or recreate tables with data, simply execute the command:

pgbench - i

Testing for 30 seconds with output of intermediate results every 5 seconds is started by the
command:

pgbench -T 30 -P 5

The result of the work will be given and the main indicator is tps , number of transactions per second :
latency average = 1.687 ms

stddev latency = 0.225 ms

initial connection time = 3.788 ms

tps = 590 .180430 (without initial connection time)

Benchmarking resulit

= the main thing is this tps in the last line
= standard deviation is derived for latency
= parameter - P allows to output current tps values and latency

pgbench -T 30 -P 5
starting vacuum...end.
progress: 5.0 s, 582.0 tps , lat 1.709 ms stddev 0.252, 0 failed

progress: 10.0 s, 597.0 tps , lat 1.667 ms stddev 0.199, 0 failed
progress: 15.0 s, 596.0 tps , lat 1.670 ms stddev 0.274, 0 failed
progress: 20.0 s, 581.8 tps , lat 1.712 ms stddev 0.186, 0 failed
progress: 25.0 s, 601.4 tps , lat 1.655 ms stddev 0.206, 0 failed
progress: 30.0 s, 582.4 tps , lat 1.710 ms stddev 0.213, 0 failed

transaction type: < builtin : TPC-B (sort of)>
scaling factor: 1

query mode: simple

Number of clients: 1

Number of threads: 1

Maximum number of tries: 1

duration: 30 s

number of transactions actually processed: 17704
number of failed transactions: 0 (0.000%)
latency average = 1.687 ms

stddev latency = 0.225 ms

initial connection time = 3.788 ms

tps = 590 .180430 (without initial connection time)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 24

Benchmarking result

What to look for in pgbench results? Example of command output:
pgbench -T 30 -P 5

pgbench (17.0)

starting vacuum...end.

progress: 5.0 s, 582.0 tps , lat 1.709 ms stddev 0.252, 0 failed

progress: 10.0 s, 597.0 tps , lat 1.667 ms stddev 0.199, 0 failed
progress: 15.0 s, 596.0 tps , lat 1.670 ms stddev 0.274, 0 failed
progress: 20.0 s, 581.8 tps , lat 1.712 ms stddev 0.186, 0 failed
progress: 25.0 s, 601.4 tps , lat 1.655 ms stddev 0.206, 0 failed
progress: 30.0 s, 582.4 tps , lat 1.710 ms stddev 0.213, 0 failed

transaction type: < builtin : TPC-B (sort of) >
scaling factor: 1

query mode: simple

Number of clients: 1

Number of threads: 1

Maximum number of tries: 1

duration: 30 s

number of transactions actually processed: 17704
number of failed transactions: 0 (0.000%)

latency average = 1.687 ms
stddev latency = 0.225 ms
initial connection time = 3.788 ms

tps = 590 .180430 (without initial connection time)

The main thing is this tps in the last line . This value will change with repeated runs, i.e. the value has a
spread. The spread indicators for tps are not displayed. The standard deviation is displayed for the
delay (latency) . In the example " accuracy " latency : 0.225 / 1.687*100= 13.33%. Roughly speaking,
tps has the same accuracy . Why do we need accuracy ?

If you tune the performance and measure tps before and after tuning, then if two tps differ within the
deviation, then the tuning did not affect the operation of the DBMS.

It is also convenient to use the -P parameter . The pgbench utility will output the current tps values.
and latency. Visually you can see what the spread in tps values is.

The convenience is that you can run pgbench and while it is running change the instance parameters
and monitor tps .

What causes the scatter ? Because of the activity of processes in the operating system. For example,
a checkpoint is completed or autovacuum is launched.

pgbench - PostgreSQL benchmarking utility

= command line utility supplied standard with PostgreSQL
= used to create a test load for performance tuning

= The built-in tests use four tables:
> pgbench accounts (100 thousand rows) , pgbench tellers (10 lines),
pgbench branches (1row), pgbench history (O lines)

create table pgbench history (tid int, bid int , aid int , delta int , mtime timestamp);
create table pgbench tellers (tid int primary key, bid int , tbalance int , filler char(84));
create table pgbench accounts (aid int primary key, bid int , abalance int , filler char(84));
@ create table pgbench branches (bid int primary key, bbalance int , filler char(88));

pgbench -i -s 100

dropping old tables...

creating tables...

generating data (client-side)...

100000 00 of 100000 00 tuples (100%) done (elapsed 39.06 s, remaining 0.00 s))
vacuuming. . .

creating primary keys...

done in 85.48 s (drop tables 0.01 s, create tables 0.01 s, client-side generate 39.29 s,
vacuum 10.91 s, primary keys 35.27 s).

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 25

pgbench - utility benchmarking PostgreSQL

The utility is used for more than just the default simple test. pgbench - This is a high-quality and
simple tool for running arbitrary transactions .

The built-in tests use tables created by the ™ -i " option . By default

four tables pgbench accounts (100 thousand rows) are created , pgbench tellers (10 lines),

pgbench branches (1row), pgbench history (O lines):
create table pgbench history (tid int , bid int , aid int , delta int , mtime timestamp);
create table pgbench tellers (tid int primary key, bid int , tbalance int , filler char(84));
create table pgbench accounts (aid int primary key, bid int , abalance int , filler char(84));
create table pgbench branches (bid int primary key, bbalance int , filler char(88));

What can be changed in the test data ?

1) The - F parameter can be used to set the percentage of block filling (fillfactor) for three
tables pgbench accounts , pgbench tellers and pgbench branches . By default, all tables
have fillfactor =100% .

2) Parameter - = (scale factor) specifies how many times to increase the number of rows in tables.

If -s is 20000 or greater, the aid columns will be of type int8 , not int4 .Example:
pgbench - i - s 1 - F 100
3) By default, foreign keys are not created.

You can add foreign keys with the command:
pgbench - i -I £

creating foreign keys...

4) You can specify what actions need to be performed when creating tables:
pgbench - i -I dtgvpf
d roping old tables...
creating t ables...

g enerating data (server-side)...
in acuuming...
creating primary keys...
creating primary keys...

5) The pgbench accounts table can be made partitioned by parameters:

-—-partitions= number of partitions
--partition-method=range Or hash
pgbench utility parameters can be found in the documentation:
https://docs.tantorlabs.ru/tdb/ru/16_4/se/pgbench.htmi

Three built-in pgbench tests

= by default pgbench runs the test TPC-B of 7 commands in one
transaction:

BEGIN;

UPDATE pgbench accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench accounts WHERE aid = :aid;

UPDATE pgbench tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench branches SET bbalance = bbalance + :delta WHERE bid = :bid;

INSERT INTO pgbench history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta,
CURRENTiTIMESTAMP);
END;

= TPC-B is a simple benchmark and does not represent the load created
by typical applications running against a DBMS.
= list of built-in tests:

pgbench -b list
Available built-in scripts:

tpcb -like: < builtin : TPC-B (sort of)>
simple-update: < builtin : simple update>
select-only: < builtin : select only>

= running a select-only test:
|pgbench -b select-only -T 10 -P 3 |

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 26

Three built-in pgbench tests

By default, pgbench runs a test roughly corresponding to TPC-B, which consists of seven commands
in a single transaction:

BEGIN;

UPDATE pgbench accounts SET abalance = abalance + :delta WHERE aid = :aid;

SELECT abalance FROM pgbench accounts WHERE aid = :aid;

UPDATE pgbench tellers SET tbalance = tbalance + :delta WHERE tid = : tid ;

UPDATE pgbench branches SET bbalance = bbalance + :delta WHERE bid = :bid;

INSERT INTO pgbench history (tid , bid, aid, delta, mtime) VALUES (: tid , :bid, :aid, :delta,
CURRENT_ TIMESTAMP) ;

END;

Substitution variables are filled with random values.

The test is too simple and does not correspond to the load created by typical applications working with
DBMS. Why is it needed then, why is it not complex ? The test allows you to determine the maximum
achievable tps .

CURRENT TIMESTAMP function returns the value at the beginning of the transaction, equivalent to the
transaction timestamp () , now () functions and differs from the clock timestamp () ,
statement timestamp () functions .When writing your commands, this should be taken into
account in order to get the time you need. The now () function is often used because the
function name is short.

List of built-in tests in pgbench :

pgbench -b list

Available built-in scripts:

tpcb -like: < builtin : TPC-B (sort of)>
simple-update : < builtin : simple update>

select-only: < builtin : select only>

simple-update test consists of three teams:

UPDATE pgbench accounts SET abalance = abalance + :delta WHERE aid = :aid;

SELECT abalance FROM pgbench _accounts WHERE aid = :aid;

INSERT INTO pgbench history (tid , bid, aid, delta, mtime) VALUES (: tid , :bid, :aid,
:delta, CURRENT TIMESTAMP) ;

select-only consists of one query:

SELECT abalance FROM pgbench accounts WHERE aid = :aid;

The tests are selected by the parameter - b

pgbench -b select-only -T 10 -P 3

pgbench launch options

- P seconds specifies the interval in seconds after which the utility
will output a line with execution statistics.

- T seconds test duration

-—- protocol=prepared .Inprepared mode , the pgbench utility
transmits the command once in each session (prepares) and then
transmits only new parameter values and the command to execute

pgbench -T 10 -P 3
progress: 10.0 s, 530.1 tps, lat 1.883 ms stddev 1.558, 0 failed
progress: 20.0 s, 427.8 tps, lat 2.319 ms stddev 7.186, 0 failed
progress: 30.0 s, 174.9 tps, lat 5.753 ms stddev 25.774, 0 failed

latency average = 2.645 ms
stddev latency = 11.181 ms

tps = 377.649988 (without initial connection time)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 27

pgbench launch options

- P seconds specifies the interval in seconds after which the utility will output a line with execution
statistics.

- T seconds sets the test duration:
pgbench -T 30 -P 10

progress: 10.0 s, 530 .1 tps , lat 1.883 ms stddev 1.558, 0 failed
progress: 20.0 s, 427 .8 tps , lat 2.319 ms stddev 7.186, 0 failed
progress: 30.0 s, 174 .9 tps , lat 5.753 ms stddev 25.774, 0 failed

latency average = 2.645 mns
stddev latency = 11.181 ms

;é; = 377 .649988 (without initial connection time)

The main result is tps - the number of transactions per second. latency correlates with tps and
indicates the execution time of a transaction or script . Unlike TPC-C, the TPC-B test does not have
artificial delays that increase the number of clients (threads), complicate the testing logic and
interpretation of the results. TPC-B executes commands at maximum speed. and defines the system
limits .

By default, commands are executed without using binding variables, in raw text. Each command is
parsed and an execution plan is built. But you can use the advanced mode and the mode with prepared
commands by setting the parameter

-- protocol=extended Or prepared .In prepared mode , the pgbench utility passes the
command once in each session (prepares) and then passes only new parameter values and the
command for execution. In this case, the execution plan cached at the session level is used, which is
usually faster, since the command is not parsed again.

In extended mode the command (including the parameter names $1 , $2, ...)issentfor
execution each time. This mode does not provide any advantages, only overhead. Binding variables are
passed in the same call, but as a separate parameter, just like in the psql utility :

select $1 as id, $2 as s \bind 5 'b' \g

or

insert into t wvalues($1, $2) \bind 5 'b' \g

Recommendations for using pgbench

= —c N specifies the number of parallel sessions in which transactions or
scripts will be executed. Sessions are created by one pgbench process
by default with one thread . The -j N parameter you can specify the
number of threads

= the number of sessions must be no less than the number of threads

= when using - ¢ N with built-in tests, it is advisable to create tables
with the -s M parameter , so thatM there were no less than N

= parameter - f script.sgl @10 you can send your own set of
commands saved in a file for execution. In this case, the " transaction "
in the pgbench report will be considered the execution of all commands
in the file

pgbench -T 10 -P 5 -c 50 -j 80

pgbench: warning: , using count from pgbench branches table (100)
100

Number of clients: 50

Number of threads: 50

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 28

Recommendations for using pgbench

By default, pgbench creates one session with the database. In practice, DBMSs serve tens or
hundreds of sessions. To determine whether the DBMS parameter settings will affect its ability to serve
a large number of sessions, the -c¢c N parameter is used . The parameter can also be used for
other purposes. For example, determining whether the DBMS can serve a given number of active
sessions and with what tps . To obtain tps in one session, you need to divide the tps returned by the
utility by the number of sessions.

Parameter -c N specifies the number of parallel sessions in which transactions or scripts will be
executed. Sessions are created by one pgbench process by default with one thread . The -3 N
parameter you can specify the number of threads . With a large number of sessions, the pgbench
process can become a bottleneck, since it will use one core. Several threads can use several processor
cores. The number of sessions must be no less than the number of threads : ¢>j

When using -c N with the built-in tests, it is advisable to create tables with the -s M option so that M is
not less than N , otherwise the result will be affected by the wait for row-level locks to be acquired, since
there is a high probability that UPDATE commands in different sessions will collide on the same row.

If you don't remember which -s M created tables, then M equal to the number of rows in the
pgbench branches table .When testing -s M there is no point in asking (-s must be specified
when creating tables, that is, with the parameter - i), about which a warning will be issued:

warning: scale option ignored, using count from pgbench branches table

The results are affected by the execution of checkpoints, maintaining the database horizon, and
starting the autovacuum.

Parameter - f file you can send your own set of commands saved in the file for execution. In this
case, the " transaction " in the pgbench report will be considered the execution of all commands in the
file.

You can specify several scripts and an integer that specifies the weighting factor: in what proportion
the scripts will be launched:

pgbench -f a.sql (@8 -f b.sql @2

Script a. sgl will be run 4 times more often than b.sqgl . The default is 1.

When using a table structure, a set of indexes, and commands close to a real application, pgbench
allows you to gualitatively test changes in instance parameters.

Example of using pgbench

- task: check which is faster count (*), count(1), count(pk)
= creating a table with data:

drop table if exists t;

create table t(pk bigserial , cl text default ' aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ');
insert into t select *, 'a' from generate series (1, 100000)

alter table t add constraint pk primary key (pk);

= creating scripts:

echo " select count(*) from t; " > countl.sql
echo " select count(1) from t; " > count2.sql
echo " select count(pk) from t; " > count3.sql

= running tests:
pgbench -T 30 -f countl.sql 2> /dev/null | grep tps

tps = 74
pgbench -T 30 -f count2.sql 2> /dev/null | grep tps
tps = 66
pgbench -T 30 -f count3.sql 2> /dev/null | grep tps
tps = 54

= result: count (1) faster than count (pk) by ~ 18%,
count (*) faster count (1) by ~10%

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 29

Example of use pgbenc h

Let's look at an example of using pgbench. The task is to check what is better to use: count (*),
count (1), count (c) when working with PostgreSQL?

First step: create a table for the test :

drop table if exists t;

create table t(pk bigserial , cl text default ' aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ');
insert into t select *, 'a' from generate series (1, 100000) ;

alter table t add constraint pk primary k;y (pk)

analyze t;

Creating files with queries that will be compared:

echo "select count(*) from t;" > countl.sql

echo "select count(l) from t;" > count2.sql

echo "select count(pk) from t;" > count3.sql

Executing tests:

pgbench -T 300 -f countl.sql 2> /dev/null | grep tps

tps=74
pgbench -T 300 -f count2.sql 2> /dev/null | grep tps
tps=66
pgbench -T 300 -f count3.sql 2> /dev/null | grep tps
tps=54

Result: count (*) faster count (1) by ~10%, count (1) faster count (c) by ~ 1 8%,

Count by primary key count (c) slowest of all .

The command explain (analyze) select count(l) from t; gives a resultwith alarge spread.
The result is consistent with the results of other researchers of the question " COUNT (*) vS COUNT (1)
https://blog.jooq.org/whats-faster-count-or-countl/

plpgsql block loop was used for testing . In our example, pgbench was used.
https://gist.github.com/lukaseder/2611212b23ba40d5f828c69b79214a0e

Qntor

1-3

Using sysbench and fio utilities

sysbench - performance testing utility

= in testing SQL commands the functionality is similar to pgbench
= testing is done using a simple table:

\d sbtestl
Table "public.sbtestl"
Column | Type | Collation | Nullable | Default

———————— o
id | integer | | not null | nextval ('sbtestl id seq':: regclass)

k | integer | | not null | O

c | character(120) | | not null | '"':: bpchar

pad | character(60) | | not null | '':: bpchar

Indexes:
"sbtestl pkey" PRIMARY KEY, btree (id)
"k_1" btree (k)

= has several scripts for testing:

1s / usr /share/sysbench

bulk insert.lua oltp_insert.lua oltp read write.lua oltp write only.lua

oltp_common.lua oltp point select.lua oltp update index.lua select random points.lua

oltp delete.lua oltp read only.lua oltp update non index.lua select random ranges.lua
sysbench --db-driver= pgsql -- pgsql -port=5432 -- pgsql -db=postgres -- pgsql -user=postgres
-- pgsql -password=postgres -- table size =100000 / usr /share/sysbench/oltp read only.lua
prepare

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

sysbench - performance testing utility

pgbench utility does not have the ability to test the main resources used by the DBMS: processor
speed (cpu), memory access (memory), file system (fileio). This is useful when comparing
hardware or reconfiguring Linux . The sysbench utility is convenient for testing resources . The utility is
available in Astralinux and other linux distributions .

Sysbench was developed for load testing of the MySql DBMS . Currently, it has tests for PostgreSQL.
In testing SQL commands, the functionality is similar to pgbench.

Installing sysbench :

sudo apt install sysbench

Available scripts for testing DBMS (SQL command sets) :

ls / usr /share/sysbench

bulk insert.lua oltp insert.lua oltp read write.lua oltp write only.lua

oltp common.lua oltp point select.lua oltp update index.lua select random points.lua
oltp delete.lua oltp read only.lua oltp update non index.lua select random ranges.lua

You can create your own tests in lua language .
Testing is performed using one table:

\d sbtestl

Table "public.sbtestl"

Column | Type |Collation| Nullable | Default

———————— e
id | integer | | not null | nextval ('sbtestl id seq':: regclass)

k | integer | | not null | O

c | character(120) | | not null | '':: bpchar

pad | character(60) | | not null | '':: bpchar

Indexes:
"sbtestl pkey" PRIMARY KEY, btree (id)
"k 1" btree (k)

When initializing tests, you can specify the number of such tables and the number of rows in the
tables:

sysbench --db-driver= pgsql -- pgsql -port=5432 -- pgsql -db= postgres -- pgsql
-user= postgres -- pgsql -password= postgres --tables=1 -- table size = 100000 /
usr /share/sysbench/oltp read only.lua prepare

After creating the tables (prepare) you can execute tests :

sysbench --db-driver= pgsql -- pgsql -port=5432 -- pgsql -db= postgres -- pgsql
-user= postgres -- pgsql -password= postgres --threads=10 --time=60 --report-
interval=5 / usr /share/sysbench/ oltp read only.lua run

Parameter --time (analog of the -T parameter for the pgbench utility) sets the test time in seconds
; ——report-interval (analog of the -P parameter for the pgbench utility) interval for outputting
lines with statistics ; --threads (analog of the -j -c parameters (in the pgbench utility) .

Deleting created objects:

sysbench --db-driver= pgsql -- pgsql -port=5432 -- pgsql -db= postgres -- pgsql
-user= postgres -- pgsql -password= postgres / usr
/share/sysbench/oltp read only.lua cleanup

Using sysbench to test CPU, memory, disks

= built-in tests: cpu , memory, fileio , threads, mutex
= testing the speed of multiple threads:

sysbench cpu run --time=10 --threads= 4 | grep sec
events per second: 4709.35
sysbench cpu run --time=10 --threads= 8 | grep sec
events per second: 4684.77

= optimal value --num-threads number of CPU cores
= operating speed (reading or writing) with memory:

sysbench memory run --memory-block-size= 4K --time=10 -- memory- oper =read -- memory-access-
mode=sequential --memory-scope=local --threads=2 | grep transf

5673.72 MiB transferred (567.27 MiB /sec)

sysbench memory run --memory-block-size=2M ...

102400.00 MiB transferred (38767.60 MiB /sec)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Using sysbench to test CPU, memory, disks

The utility is successfully used for testing and comparing central processors:

sysbench cpu run --time=10 | grep sec

events per second: 1218.32

sysbench cpu run --time=10 --threads=4 | grep sec

events per second: 4709.35

sysbench cpu run --time=10 --threads=8 | grep sec

events per second: 4684.77

The optimal value of --num-threads is the number of CPU cores (in the example 4).

Memory performance:

sysbench memory run --memory-block-size=4K --time=10 --memory- oper =read --memory-
access-mode= seq --memory-scope=local --threads=2 | grep transf

5673.72 MiB transferred (567.27 MiB /sec)

sysbench memory run --memory-block-size=8K

11331.38 MiB transferred (1132.94 MiB /sec)

sysbench memory run --memory-block-size=2M ...

102400.00 MiB transferred (38767.60 MiB /sec)

sysbench memory run --memory-block-size=1G

102400.00 MiB transferred (23047.27 MiB /sec)

The product of -- threads and -- memory-block-size must not exceed free physical memory ; -
-memory-scope=local each thread works with its own part of the memory. Threads will use MMU (
memory management unit, device for accessing the main memory) its core. There is a performance
dependence on the number of threads and the size of the memory chunk. Multithreading testing
parameters :

The number of threads (-- threads), the number of locks (-- thread-locks), and the number
of times a thread should execute its workload according to the algorithm: lock - > yield -> work ->
unlock (-- thread-yields).

sysbench threads run --time=10 --thread-locks=1] --threads=4 | grep events:

Total number of events: 1453

sysbench threads run --time=10 --thread-locks=1] --threads=1 | grep events:
Total number of events: 2775
sysbench threads run --time=10 --thread-locks=4 --threads=4 | grep events:

Total number of events: 7697

Testing hardware resources

= starting threads and running them simultaneously:

sysbench threads --threads= 128 --time=10 run | grep events:
Total number of events: 1502

sysbench threads --threads= 8 --time=10 run | grep events:
Total number of events: 3991

sysbench threads --threads= 4 --time=10 run | grep events:
Total number of events: 8278

sysbench threads --threads= 1 --time=10 run | grep events:
Total number of events: 2773

= test of working with files:

sysbench fileio --file-total-size=128M --file-num=8 prepare
134217728 bytes written in 1.19 seconds (107.12 MiB /sec).
sysbench fileio --file-block-size=8K --file- fsync -mode= fdatasync -- file- fsync -end=on --
file-total-size=128M --file-num=8 --file-test-mode= rndrw --max-time=10 run | grep /s
reads/s: 435.92
writes/s: 290.61
fsyncs /s: 939.62
read, MiB /s: 6.81
written, MiB /s: 4.54
events (avg /stddev): 16613.0000/0.00
execution time (avg /stddev): 9.8619/0.00

= test of lightweight lock usage (mutex)

sysbench mutex run -- mutex -num=9000000 | grep exec
execution time (_avg / stddev): 0.1511/0.00

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 34

Testing hardware resources

Starting threads and running them simultaneously:

sysbench threads --threads=128 --time=10 run | grep events:

Total number of events: 1502

sysbench threads --threads=8 --time=10 run | grep events:

Total number of events: 3991

sysbench threads --threads=4 --time=10 run | grep events:

Total number of events: 8278

sysbench threads --threads=1 --time=10 run | grep events:

Total number of events: 2773

Test of lightweight locks (mutex). Each thread does a simple action like incrementing a number in a
loop (-- mutex-loops), then the thread takes a random mutex (one of -- mutex-num), increments
the variable, and releases the mutex . This is repeated -- mutex-locks number of times.

sysbench mutex run -- mutex -num=9000000 | grep exec

execution time (avg /stddev): 0.1511/0.00

Test of working with files:

sysbench fileio --file-total-size=128M --file-num=8 prepare

134217728 bytes written in 1.19 seconds (107.12 MiB /sec).

sysbench fileio --file-block-size=8K --file- fsync -mode= fdatasync --file- fsync -end=on
--file-total-size=128M -- file-num=8 --file-test-mode= rndrw --max-time=10 run | grep /s
reads/s: 563.16

writes/s: 375.44

fsyncs /s: 75.19

read, MiB /s: 4.40

written, MiB /s: 2.93

events (avg /stddev): 10253.0000/0.00

execution time (avg /stddev): 9.9455/0.00

sysbench fileio cleanup

The --file-test-mode= parameter value is rndrw random read-write. The parameters --file-
total-size=128M --file-num=8 define the file size. PostgreSQL uses 16MB for WAL files and 1 Gb
for data files , fdatasync for WAL and fsync synchronization for data files.

The utility does not give all parameters by --help . Description of parameters should be looked at :
man sysbench.

Testing I/0 with Flexible IO Tester (fio)

= sysbench uses test files filled with zeros
= for testing input-output, a utility is usually used fio
= Main parameters when testing equipment for PostgreSQL :
> bs =8k PostgreSQL reads and writes in 8K blocks by default
> direct=0 PostgreSQL by default works with files through the page cache

[[SUJO apt update && apt inscall rio -yY

sudo fio -- rw = rw -- rwmixread =75 --size=16m --directory=/ -- fadvise_hint =0 -- blocksize =8k
--direct=0 -- numjobs =1 -- nrfiles =1 --runtime=5s -- time based -- exec_prerun ="echo 3 >
/proc/sys/ vm / drop_caches " -- group reporting --name=testl

read : IOPS=15.2k , BW= 119MiB/s (124MB/s) (594MiB/501lmsec)
lat (usec): min=3, max=51909, avg = 53.39 , stdev =860.06
bw (KiB /s): min=110946, max=147129, per=100.00%, avg = 121645 .70, stdev =12274.53,
samples=10
iops : min=13868, max=18391, avg = 15205 .60, stdev =1534.21, samples=10
write : IOPS=5045 , BW= 39.4MiB/s (41.3MB/s) (198MiB/5011lmsec); 0 zone resets
lat (usec): min=4, max=137, avg = 8.57 , stdev =4.52
bw (KiB /s): min=37184, max=48542, per=100.00%, avg = 40428 .10, stdev =3900.63, samples=10
iops : min= 4648, max= 6067, avg = 5053.30 , stdev =487.36, samples=10
cpu : usr =23.27%, sys=5.33% , ctx =2279, majf =0, minf =14

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Testing 1/0 with Flexible 10 Tester (fio)

When analyzing the performance of the disk subsystem, sysbench uses test files filled with zeros.
The equipment can optimize the work with such files. For accurate 1/0 testing, use the £fio (Flexible IO
Tester) and flashbench utilities . |/O performance can be limited by the 1/0 bus: the number of
PCle lines..

Installing the utility:

apt install fio -y

Parameters:

bs =8k PostgreSQL reads and writes in 8K blocks by default

direct=0 PostgreSQL by default works with files through the page cache. For comparison storage
systems can use direct=1

numjobs - the number of threads that fio is running loads the system. Optimally, the value should be
equal to the number of cores or hardware threads

iodepth - command queue depth. The numjobs and iodepth parameters are increased to obtain
maximum IOPS values, since one thread is unlikely to utilize the entire PCle bus bandwidth . A large
iodepth value can load the processor core up to 100% and the core will become a bottleneck.

rwmixread =75 read /write ratio. For OLTP : 80/20 or 75/25

fadvise hint =0 sets the POSIX_FADV_DONTNEED hint

exec prerun ="echo 3 > /proc/sys/ vm / drop caches " Before restarts, clean page cache
pages and slab structures it is worth freeing

size=1G maximum size of data file in PostgreSQL 1GB . There must be free space in the directory
where the files will be created

rw = randread , read , write, randwrite , randread

filename path to a file or block device for testing. Do not specify a block device with a file system
for write tests (readwrite , randrw , write, trimwrite) the file system will be corrupted (the
contents of the device will be erased). Also, when specifying a file, the data in it is overwritten.

ioengine = libaio the fastest (because it is nhon-blocking), psync by default

Main metrics: iops , bw - data transfer rate, latency , cpu (usr, sys)

NLor

1-4
TPC tests

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 36

TPC-B and TPC-C

tests -

< |n TPC-B, commands are
executed on the database side
at maximum speed

< TPC-B test emulates the
operation of a bank arebeEe | S

« TPC-C test emulates the _—— o x T new ofdar |
operation of a wholesale L2 B mue BB
warehouse = :) — :

- transaction execution time in SRl M e || mae T mas
TPC-C is 5 seconds for all
transactions except one where
the execution time is up to 20
seconds

= the main result is tpmC -

number of transactions per

o000 00 0
n'n'o'n'n

oo
I |
bl e
oGk
XAXTR R
a o 0
a

"

jul
a

[

o

<pk, £k>

EIEI I

=

= =
Llelslalolals'

smallint <pk,fk1>

<pk, fk1>
<pk, fk1>
<pk, £k1>
<pk>
int <fk2>
i id smallint <fk2>
ol _supply w_id datetime
e int

00000000000k
FE R RN R]
BEBBBEOEE DD E
HHHRHKHKHK
S
=

o

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 37

TPC-B and TPC-C tests

In 1988, the Transaction Processing Performance Council was formed from 26 companies and the
TPC-A and TPC-B benchmark specifications were approved . These benchmarks differed in that the
former required client emulation (" terminals ") with a delay in client response time. In TPC-B
commands are executed on the database side at maximum speed. In both tests, the work of a bank was
emulated. In the TPC-C test , the work of a wholesale warehouse was emulated. This reflected the fact
that DBMSs began to be actively used by trading companies, and banks had already been automated.
The unit of scaling (scale factor) in TPC-C is a warehouse (table Warehouse). Each warehouse has
ten districts (table district), equipped with a " terminal " (client program of the DBMS) . Each terminal
is designed to register orders (table orders) . Each order (trade transaction) consists of positions (
table order_line) of one product sold (table stock). In each district, no more than 1.2 orders can be
made per minute. As soon as this limit of orders per minute (tpmC) is reached, according to the test
conditions, another warehouse is added (table warehouse) . Warehouses are created in advance and
transactions are carried out on these warehouses during testing. While 90% of transactions are carried
out in less than 5 seconds, the use of warehouses continues. In addition to orders (45% of the total
load), transactions for receiving payments with updating the client's balance (43%), checking the status
of the last order of any one client (4%), checking the quantity of goods in the warehouse (4%), and
generating delivery requests (4%) are simultaneously performed. The request includes orders placed at
the time of generating the request. The threshold time for generating a delivery request is 20 seconds.
The execution time of each trade transaction (request, order), which corresponds to a database
transaction consisting of one or more SQL commands , is calculated separately and the distribution of
values can be used as one of the test results. The main result is tpmC - number of transactions per
minute. Other non-technical results: transaction cost (depends on the cost of licenses for the DBMS or
hardware and software complex), estimated value of how many watts of electricity will be spent on a
thousand transactions per minute (W/ ktpmC) . TPC-R tests for reports, TPC-D for OLAP , TPC-W for
orders in the online store have not become widespread . Based on TPC-D, a more successful TPC-H
test was created for data warehouses and analytical queries ("OLAP load "). The number of tables is 8,
integrity constraints are 17. In TPC-H, nominations were allocated for the sizes of processed data from
" up to 100 GB " to 30-100 TB.

TPC - E Test , Network Failure Resilience Testing

= TPC-E benchmark for OLTP , appeared in 2006

= instead of a wholesale warehouse, the work of a brokerage company is
described, the number of tables is 33 (TPC-E) , instead of 9 (TPC-C)

= 33 primary keys instead of 8, 50 foreign keys instead of 9

= Due to the complexity of reproducing and implementing TPC tests ,
simple utilities are in demand

- PostgreSQL family databases the pgbench utility is used

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 38

TPC-E test, network failure resilience testing

In 2006, the TPC-E test for OLTP appeared, replacing TPC-C . Instead of a wholesale warehouse, the
work of a brokerage company is described, the number of tables is 33, instead of 9. There are 33
primary keys instead of 8, 50 foreign keys instead of 9. Added data types for boolean columns and lob.
The metric became known as tpsE .

Because of the complexity of reproducing and implementing TPC tests , simple utilities are in demand
that measure simple metrics with repeatability of results and confidence intervals (acceptable data
spread). For PostgreSQL, pgbench is used .

Clients connect to databases over the network. Packets (messages at some network level) can be lost,
the order of packet delivery can change, packets can be duplicated. The reasons can be: network card
failure, driver errors, lack of memory, equipment that prevents network traffic from passing. To test the
resilience of databases to such errors, jepsen is used. framework. For PostgreSQL , it was found that if
the client received a confirmation of transaction commit, then in 100% the transaction is committed and
durability is ensured. If the client received an | / O error message , then the transaction may or may not
be committed. The probability of such an event is rare. The 2PC protocol does not protect against this
type of error , the E3PC protocol provides protection against network failures . However, these
protocols reduce performance.

Oracle Database, starting with version 12, has an Oracle Transaction Guard option to protect against
this type of failure. Redis and MongoDB lost a significant percentage of data (
https://www.infog.com/articles/jepsen/). Technologies that promise high performance should be used
taking into account fault tolerance. Suitable and proven solutions should be selected for specific tasks.
For example, in tasks where guaranteed response time (transaction execution) is important, real-time
databases are used. In cases where transaction losses are unacceptable (finance), Oracle Database
and PostgreSQL are used.

When measuring performance, transaction execution time (may be called latency , response time) is a
stand-alone metric .

Implementation of TPC-C test

= uses tpmC as the measurement result the number of " transactions " of
this test per minute

= can be used to compare the performance of DBMSs from different
manufacturers

= not suitable for assessing the impact of changes to the instance

- ¢RETRHAEUARtage of the test is that the g
test rules are overcomplicated , which

w| Bt~ | Ogins | Help

= E = [T ® NG Fon

leads to an increase in the amount of e oy o 4 o
data in the tables, the number of clients £ & om o T 9 W00 il
and the memory they consume =

= uses a set of SQL commands an order of 2
magnitude more complex than TPC -B
and uses 9 tables e e ome s

= HammerDB application includes TPC-C 5 & o ;
and TPC-H benchmark variants — T ——,

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 39

Implementation of TPC-C test

The TPC-C test uses a set of commands that is an order of magnitude more complex than TPC-B and
uses 9 tables : Warehouse , District , Customer , Order , New - Order , History , Item , Stock , Order -
Line . It uses 5 transaction types: New order , Payment , Order status , Delivery , Stock level , which are
randomly selected in a proportion specified by the test.

Both tests simulate OLTP workload: short transactions with selection and updating of a small number
of rows. The disadvantage of the test is the overcomplication of the test rules, which leads to an
increase in the amount of data in the tables, the number of clients and the memory they consume ;
there is no program code, only a description of the test. TPC-C uses tpmC as the measurement result
the number of " transactions " of this test per minute. The test can be used to compare the
performance of DBMS from different manufacturers. It is not suitable for assessing the impact of
changes in the instance configuration.

applications implementing TPC tests , most of them are not working. One of the working programs is
HammerDB , it includes TPC-C and TPC-H tests. The application's website publishes the test results.
Results performed in HammerDB are comparable to each other.

TPC-H benchmark is designed for data warehouses and includes 22 queries called Q1 ... Q22 . The
TPC-H benchmark does not change the data in the tables, so it is suitable for repeated runs without
recreating the tables.

Queries Q17 and Q20 correlated, are the most difficult for any DBMS . If the DBMS operation with data
warehouses is optimized, it is probably worth paying attention to optimizing the execution of these
particular queries. The clickhouse DBMS specializing in analytics cannot be in 2024 execute these two
queries.

https://habr.com/ru/companies/ydb/articles/801587/

HammerDB Application

= implements a subset of the full TPC-C specification, modified to make
the workload simpler and easier to execute

= HammerDB Type- C test results are not comparable to other tests that
use the tpmC metric

= the results are comparable if they are run in HammerDB

= The difference with TPC-C is that by

default HammerDB runs without input ane S
and reflection delays. The Type-C test =B & & § & > 0 £ B0y oA
runs the TPC-C workload without PO il b T Bt
delays. i it Benchmrk Optians _

- HammerDB test result type -C: TPM and wsa I
NOPM MEHEDB' sl server) 1 TPROC-H

Dh2
MWYSQL

@) PostgreSQL
MariaDB

DK Cancel

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 40

HammerDB Application

The application implements a test based on the TPC-C specification, but does not implement the full
TPC-C test rule specification by default.

HammerDB results are not comparable to officially published TPC-C benchmarks . Official TPC-C
benchmarks are extremely expensive, labor-intensive, and complex. HammerDB is designed to allow a
TPC-C benchmark to be run at low cost on any system, providing professional, reliable, and predictable
load testing for all database environments. HammerDB results are not comparable to other benchmarks
that use the tpmC metric . However, the results produced by the application are comparable to each
other.

In the test results, HammerDB provides two metrics for comparison with other HammerDB test results :
TPM and NOPM. NOPM is the number of new orders per minute. NOPM can be used to compare the
performance of different types of DBMS.

HammerDB can be considered as a subset of the full TPC-C specification, modified to simplify and
facilitate the workload execution. The main similarities are the definition of the storage schema and the
data itself, as well as 5 transactions implemented as stored procedures. The main difference is that by
default HammerDB runs without input and think delays. This means that HammerDB TPROC-C runs the
TPC-C compliant workload without delays, maximizing the load on the DBMS . The number of users and
the required data volume on which maximum performance is achieved will be much smaller than in a
full TPC-C implementation.

HammerDB does not implement " terminals " as the full specification does. This eliminates the need for
large numbers of clients and huge amounts of data, while still providing a robust test of the capabilities
and performance of relational databases.

Parameters for the HammerDB Type -C test

= The official TPC-C benchmark has a fixed number of users per storage
and uses input and think time so that the workload generated by each
user is not intensive

= HammerDB does not use input and think B sarmece
time by default, and therefore the RO W SR
number of Virtual Users is approximately iy e e
equal to the number of cores on the host E: —
running the DBMS. e

= 4-5 warehouses per Virtual User will be B s
the minimum value to ensure an even ™ i
distribution of Virtual Users across the -
warehouse s

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 41

Parameters for HammerDB Type-C test

When creating tables for TPC-C, the following are specified:

Number of Warehouses - the number of warehouses. For 2000 " warehouses " the table size is ~250
GB. The number of warehouses should be 10 times greater than the number of " clients ', since the
number of simultaneous transactions for one warehouse is limited by the test conditions. In terms of the
test:

Virtual Users number of " clients ' - the same as threads, sessions for parallel load.

Driver Script - the command file is created automatically.

Rampup Time - time of gradual increase of load.

How many warehouses to create ? The base number of warehouses is 250-500 per CPU. The official
TPC-C benchmark has a fixed number of users per warehouse and uses think time so that the workload
generated by each user is not intensive. This increases the number of clients and requires a large
number of hosts. HammerDB does not use think time by default, and therefore the number of Virtual
Users is approximately equal to the number of cores on the DBMS host. With Hyper Threading, the
number of Virtual Users can be increased by a third of the number of physical cores.

1 0 warehouses to serve 100 Virtual Users will mean that the workload will spend significantly more
time competing for locks and tpm will be lower. 4-5 warehouses per Virtual User will be the minimum
value to ensure an even distribution of Virtual Users across the warehouse. For 100 Virtual Users, it is
worth creating a minimum of 400-500 warehouses.

For top configurations of DBMS of any manufacturer, maximum performance for tests without time for
thinking is achieved in the region of 2000 warehouses and up to 500 sessions (Virtual Users).

Go Utility - TPC

= the utility is written in the go language, works in the command line,
which allows you to automate its launch
= implements TPC-C, TPC-H, CHmark tests
= CHmark combines both tests, uses the TPC-C table scheme and the
simplified TPC-H scheme
> was created for databases serving mixed loads: OLTP and OLAP at the
same time
> For PostgreSQL, it is recommended to migrate OLAP workload to physical
replicas

wget https://raw.githubusercontent.com/pingcap/go-tpc/master/install.sh

chmod +xinstall.sh

./install.sh

cd .g- tpc /bin

./go-tpc tpcc prepare --warehouses 1 -d postgres -U postgres -p postgres -H 127.0.0.1 -P 5432
./go-tpc tpcc run --time 30s -d postgres -U postgres -p postgres -H 127.0.0.1 -P 5432

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 42

Go-TPC Utility

GO-TPC utility is written in the go language and runs on the command line, which allows you to
automate its launch. and this is its advantage. The utility implements TPC-C, TPC-H, CHmark tests .
CHmark combines both tests, uses the TPC-C table scheme and a simplified TPC-H scheme. The test
was created for databases serving mixed load: OLTP and OLAP at the same time. For PostgreSQL, it is
recommended to transfer the OLAP load to physical replicas. The test may be interesting as a use of a
more complex load than short-term TPC-C transactions .

Installing the utility:

wget https://raw.githubusercontent.com/pingcap/go-tpc/master/install.sh

chmod +xinstall.sh

./install.sh

/ var /lib/ postgresql /. bash profile has been modified to add go- tpc to PATH

Installed path: / var / 1lib/ postgresqgl /.go-tpc /bin/go- tpc

cd .g- tpc /bin

./go-tpc tpcc prepare -d postgres -U postgres -p postgres - D tpcc -H 127.0.0.1 -P 5432

By default creates 10 warehouses . With the parameter -- warehouses N You can specify the
desired number of warehouses. By default, it creates a database named test. Tables for tests should
use different databases. If the tables are not needed, it is enough to delete the created database.
To create tables for the TPC-H test, use the command:

./go-tpc tpch prepare -d postgres -U postgres -p postgres - D tpch -H 127.0.0.1 -P 5432
Running tests:

./go-tpc tpcc run -d postgres -U postgres -p postgres -D tpcc -H 127.0.0.1 -P 5432

./go-tpc tpch run -- sf 1 -d postgres -U postgres -p postgres -D tpch -H 127.0.0.1 -P 5432

Parameter -- sf N sets the scale factor , default is 1. By default, the size of tables is small: in the
lineitem table 6 million lines, orders 1.5 million.

the --count N parameter you can set the number of iterations. For tpch This is the number of
requests.

-T parameter can be used to set the number of threads; the default is 1.

the --time NhNmNs parameter You can set the duration of the test.

Testing can be interrupted by pressing < ctrl+c > and getting the result:
Got signal [interrupt] to exit.

Finished

tpmC : 939.7, tpmTotal : 2089.7, efficiency: 730.7%

Practice

Part 1. Standard pgbench test

Part 2. Using pgbench with your own script
Part 3. Using the sysbench utility

Part 4. Using the HammerDB application
Part 5. Using the Go-TPC application

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 43

Practice

Objective of the practice: to use performance testing utilities.

In practice you :

run te c t pgbench and check how the test result changes if you hold the database horizon ;

check which is faster count(*) or count(l);

how many times the execution time of the EXPLAIN command is reduced when using the timing off
option;

sysbench utility reports .

Install the HammerDB program , run the test and see how autoanalysis worsens the DBMS
performance.

Install the Go - TPC program and learn how small queries can take several hours to execute (not all
DBMS can execute such queries) .

2-1

Memory

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 44

RAM

Memory is managed in pages.

= the size of a normal page is 4Kb, set by hardware

= TLB size (Translation Lookaside Buffer (associative translation
buffer) 2-4Kb

= miss rate 0.01-1%

= when hitting the TLB, the memory access speed is 1 /2-1 processor
cycle

= if the reference is not in the TLB, a slow translation mechanism is
used

= misses are processed in 10-100 processor cycles

= the size of a normal memory page is given by the command:

astra@tantor :~$ getconf PAGE_SIZE
4096

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 45

RAM

RAM is one of the main resources used by instance processes. RAM size is not the only parameter that
affects the efficiency of memory work. This chapter discusses the features of memory work that affect
efficiency.

The MMU (memory management unit) divides the virtual address space (a one-dimensional array of
addresses used by the processor) into equal-sized chunks called pages. The address of a memory cell
(which the processor processes in one clock cycle) consists of an offset within the page and a page
number. Concatenating the physical page number with the offset within the page yields the physical
address. The MMU converts virtual page numbers to physical page numbers using the TLB .

The operating system runs on top of the hardware and allocates memory in pages that the hardware
uses. The size of a typical memory page is 4 kilobytes (4096 bytes). The page size is given by the
command:

astra@tantor :~$S getconf PAGE SIZE

4096

Why is the page size 4KB, can it be changed and can it be different ?

All x86 processors currently have a standard page size of 4 KB . The size is chosen empirically and is
determined limitations of the mutual arrangement of semiconductor elements on a silicon crystal. For
x86 and ARM, it is assumed that 64K pages will be used in the future.

To translate virtual memory into physical memory addresses, the CPU chip has a TLB (Translation
Lookaside Buffer , associative translation buffer) . The TLB functions as an array of references to the
main memory cache. The amount of memory that the TLB can simultaneously display is determined by
the number of TLB " entries " and the size of the " entry " . The TLB size is 2K-4K " entries " . Access to
memory referenced in the TLB occurs in 1 or half a clock cycle (dual mode) CPU. If there is no link, then
access takes 10-100 CPU cycles (miss penalty) .

If the reference is not in the TLB, a slow translation mechanism is used: hardware or software
structures (page table , PT, page tables) of the operating system. The data in these structures is called
page table entries (PTE). The procedure is called page walk , it walks PT. PT has a tree structure (
radix-tree).

Virtual memory addressing

= the operating system and processes work with a virtual
address space

< The MMU (memory management unit) divides the virtual
address space into equal-sized areas called pages.

= the translation of a virtual address to a physical address should
be as fast as possible

= the operating system must transparently save (swap) the
contents of physical memory to external storage and read back

('swapping)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 46

Virtual memory addressing

PTE and TLB may contain additional information: page write flag bit (dirty bit), time of last access to
the page (accessed bit), which is used to implement the page eviction algorithm (least recently used ,
LRU), which processes (user) or system (supervisor) can read or write data to the page, whether the
page needs to be cached.

Practical (" empirical ") TLB cache miss rate 0.01 -1% (1:100... 10000).

Why ? After all, even 4GB of virtual memory corresponds to a million pages. The TLB size is 4K (and is
usually even divided in half into pages with dTLB data and executable code iTLB). It turns out that the
difference is a million times, not 10,000 times . It helps that programs access memory in a highly non-
uniform way (non-linear distribution): very often to some memory pages, rarely to others. For example,
if a program allocates memory by gigabyte (writes, then reads), then the speed will be about 2
gigabytes per second, which is slower than accessing an SSD. At the same time, the speed of access to
small volumes will be an order of magnitude higher (20 gigabytes per second).

x86 architecture handles TLB misses at the hardware level, not the operating system (software
handlers). When handled by the operating system, the TLB miss handler code is typically 10-100
instructions long (when handled at the hardware level: " clocks "). The CPU can be evicted from the
CPU instruction cache and the miss can take much longer to handle than when handled at the hardware
level. Software TLBs were found in the MIPS, SPARC, Alpha and PA-RISC architectures. Only on these
architectures could the operating system (linux) use 8Kb pages.

The translation of a virtual address into a physical address must be as fast as possible. The operating
system transparently saves (pushes out) the contents of physical memory to external storage (files or
swap partitions) and reads the pages back. This is called swapping. The content is stored in pages,
swapping works with normal sized pages. Huge Pages in Linux are not mapped to the page cache, so
they are not swapped out , which provides more predictable performance.

Memory page size

= processors support 2 types of pages, normal and huge (
Huge Page s)
= On x86-64 architecture, huge pages can be 2MB and 1GB in

Slze.
&R VOVSOFT - RAM Benchmark W VOVSOFT - RAM Benchmark
File Settings Help File Settings Help
Total Physical Memory: 15,89 GB Total Physical Memory: 15,89 GB
Available Physical Memory: 10,17 GB Available Physical Memory: 10,52 GB
WRITE + READ WRITE + READ

Block Size (GB): |1 = Run Block Size (GB): |8 = Run

Elapsed Time: 0,49 seconds Elapsed Time: 4,03 seconds

Speed (Avg): 2111,34 MB/s Speed (Avg): 2032,25 MB/s

Speed (Min): 2111,34 MB/s Speed (Min): 2032,25 MB/s

Speed (Max): 2111,34 MB/s Speed (Max): 2032,25 MB/s

Bandwidth: Not tested Bandwidth: E testec

24492 Mb/c 2x Core m7-6Y75 HT

[Good I Good i |

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 47

Memory page size

Modern processors support both regular and huge (Huge Page s) pages.

For processors x86-64 architecture huge pages can be 2MB and 1GB in size.

The processor supports large pages of 2MB if the commands:

astra@tantor :~$ lscpu | grep pse

or

astra@tantor :~$ cat /proc/ cpuinfo | grep pse | uniq
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse 36
clflush mmx fxsr sse sse2 ht syscall nx

give a non-empty string, in the given string the word pse is present.

This was an example of the output for

model name : Intel (R) Core(TM) i3 -8100 CPU @ 3.60GHz

The processor supports HugePages 1GB in size, if the team
astra@tantor :~$ cat /proc/ cpuinfo | grep pdpelgb | uniq
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse 36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp 1lm
constant tsc arch perfmon pebs bts rep good nopl

will give a non-empty line, the output line will contain the word pdpelgb .

This was an example of the output for

model name : Intel (R) Core(TM) i7 -4700HQ CPU @ 2.40GHz

In the output for i3 -8100 this word was not there, which means the i3 processor does not support
large pages of 1 GB.

For AMD Ryzen 5 1600X Six-Core Processor

flags: .. pae .. pse36 .. pdpelgb

TLB size: 2560 4K pages

The output for AMD contains the line TLB size.

The slide shows the measurement of the write-read speed of a piece of memory of 1GB, 8GB ~ 2GB /
s and individual pages ~ 24GB / s on the same host with regular pages, which is an order of magnitude
slower. Initial allocation of 1GB or 8GB does not introduce any significant delay. The main role is played
by the increase in the TLB miss rate . Access to a page that was recently accessed is an order of
magnitude faster than to one whose reference was evicted from the TLB.

https://wiki.debian.org/Hugepages#x86_64

Translation Lookaside Buffer (TLB) Size

- TLB organization depends on the processor (generation,
architecture)

- performance when choosing 2M or 1G pages on different
processors can vary significantly

= Intel Sky Lake, Coffee Lake, Cascade Lake processors store
1536 references to 4K and 2M pages and 16 references to 1G
pages in the L2 TLB

= Intel Sunny Cove family processors have 2048 links, of
which up to 1024 links can be used for pages of 2ZM or 1 G
size

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 48

Translation Lookaside Buffer (TLB) Size

The choice of page size (4K, 2M, 1G) depends on the processor model. Performance when choosing
2M or 1G pages on different processors can vary significantly .

the Intel "Lake™ processor family :

TLB consists of dedicated L1 TLB for instruction cache (ITLB) and another one

for data cache (DTLB) . Additionally there is a unified L2 TLB (STLB)
DTLB
4K page translations: 64 entries ; 4-way set associative fixed partition

2M page translations: 32 entries; 4-way set associative fixed partition

1G page translations: 4 entries; 4-way set associative fixed partition

STLB

4K+2M page translations: 1536 entries ; 1l2-way set associative fixed partition

1G page translations: 16 entries ; 4-way set associative fixed partition

The characteristics are given without translation, as they consist mainly of terms. When translating
highly specialized terms, the meaning is lost.

Intel processor families are given in the manual:

https://cdrdv2-public.intel.com/821613/355308-0Optimization-Reference-Manual-050-Changes-
Doc.pdf

Meaning of terms:

"partition™ - distribution of the number of entries for pages of different sizes.

"fixed" - the number of entries for pages of a certain size is fixed.

"shared" - the operating system will be able to choose how many entries to use for pages of one size
and the rest of the space under entries for pages of another size.

Intel "Lake" processor families The L2 TLB can store references to 16 1GB pages .

The specified characteristics define the capabilities of processors, are published by processor
manufacturers partially. Not only processor manufacturers avoid direct comparison of their products.
This is justified by the fact that to determine the real capabilities of processors, it is necessary to
compare the values as a whole, and also by the fact that due to differences in implementation, the
characteristics of different manufacturers and even products are only consonant and cannot be directly
compared. Example: the cost of the execution plan (cost) are comparable only for one request, for
different requests, cost is not comparable. Another example: one processor can have 256 vCPU , the
second 8 vCPU , while the real performance of the second processor can be higher. Performance is
determined by the balance of processor characteristics. This does not mean that you do not need to
know about the characteristics of the processors. When determining the characteristics, you need to
find out in detail what is meant by the name of the characteristic and how a change in the characteristic
affects the overall performance, since the effect is not always linear.

The characteristics of the processor families are given on the website:

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

DTLB 4 KiB TLB competitively shared (from fixed partitioning)

Single unified TLB for all pages (from 4 KiB+2/4 MiB and separate 1 GiB)

STLB uses dynamic partitioning (from partition fixed partitioning)

4K pages can use all 2,048 entries

2M pages can use 1,024 entries (8-way sets), shared with 4K pages

1G pages can use 1,024 entries (8-way sets), shared with 4K pages

DTLB

4K page translations: 64 entries ; 4-way set associative competitively shared
2M page translations: 32 entries ; 4-way set associative competitively shared
1G page translations: 8 entries ; 8-way set associative competitively partition
STLB

All pages: 2,048 entire ; l6-way set associative

About the degree of associativity (N -way set associative) itis enough to know: the larger the
number (N -ways), the greater the efficiency of the cache . A 1K 4-way is about as efficient as a 2K 2-
way . An 8 -way of 1K size is about as efficient as a 4- way of slightly less than 2K size .

https://ru.m.wikipedia.org/wiki/Cache_processor

Huge pages (Huge Page s)

= the number of Huge Pages must be virtual addresses
set manually in the operating system

parameter vim.nr hugepages CPU
= it is possible and necessary to install
with a small reserve '

- change the number of Huge Pages
without rebooting TLB — MMU
= consider using with a large amount of
physical memory (more than ~128 GB)
physical '
addresses .=+ RAM

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 50

Huge Pages

Before enabling Huge Pages (HP) usage, you need to estimate how much HP you plan to use. To get
the amount of memory allocated to an operating system process, you can find the PID of the process.
In the example , the PID of the postmaster process is taken to see how much virtual memory the
process has allocated based on the fact that HugePages are allocated or reserved when the instance is
started:

astra@tantor :~$ ps - ef | grep postgres

postgres 926 1 0 00:00:02 / usr /lib/ postgresqgl /15/bin/ postgres

postgres 978 926 0 00:00:00 postgres : 15/main: logger

postgres 991 926 0 00:00:00 postgres : 15/main: checkpointer

Next, find the line in the statistics using the command:

astra@tantor : ~ $ cat /proc/ 926 /status | grep VmPeak

VmPeak : 265284 kB

In this example , 265284kB was output, which is slightly less than 260MB or 130 2MB pages.

HugePages can use the shared pool and parallel processes. In the example, the shared pool is 128MB.
260MB is much larger than the shared pool. When allocating HugePages, you can use VmPeak only as a
guideline. You <can also wuse the sum of the values of shared buffers +
min dynamic shared memory . TO get a more accurate estimate, you will have to stop the instance
and start postgres from the command line with the -C shared memory size in huge pages
parameter .However, in forks PostgreSQL huge pages can use other memory structures as well.

Example of reserving address space in virtual memory for 300 pages:

root@tantor :~# sysctl -w vm.nr hugepages =300

vm.nr hugepages = 300

To save the new value after restarting the operating system, you can insert the desired number of
huge pages at the end of the configuration file:
root@tantor :~# echo " vm.nr_ hugepages = 300" > > /etc/ sysctl.conf

Apply the changes that appeared in the file:

root@tantor :~# sysctl -p

vm.nr hugepages = 300

How big should HP make its page reserve? This is determined by the CommitMemory formula on the
slide " Setting overcommit and swap values ", which will be a little further . In the absence of swap, the
reserve should be minimal.

Using Huge Pages

Usage statistics :

e cat /proc/ meminfo | grep Huge
> HugePages Rsvd :inuse
> HugePages Free :can be used
> HugePages Total :available

root@tantor :~# cat /proc/ meminfo | grep Huge
AnonHugePages : 0 kB

ShmemHugePages : 0 kB

FileHugePages : 0 kB

HugePages_ Total : 300

HugePages Free : 281

HugePages Rsvd : 72

HugePages Surp : 0

Hugepagesize : 2048 kB

Hugetlb : 614400 kB

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Using Huge Pages

The use of HP in PostgreSQL is determined by the huge pages parameter . By default, itis setto try
. If HP are available, they are allocated; if allocation fails, regular pages are allocated. If you set the
parameter to "on" , then if it is not possible to allocate an HP page, regular pages will not be allocated
and the instance may not start if the shortage occurs during instance startup. You should not use the "
on " value unless you have ensured that there are enough HP pages .

Let's check that large pages are available to processes:

root@tantor :~# cat /proc/ meminfo | grep Huge
AnonHugePages : 0 kB
ShmemHugePages : 0 kB
FileHugePages : 0 kB
HugePages Total : 300
HugePages Free : 300
HugePages Rsvd : 0
HugePages Surp : 0
Hugepagesize : 2048 kB
Hugetlb : 614400 kB

Let's restart the instance:
root@tantor :~# systemctl restart postgresql

Let's check that the pages have been selected:
root@tantor :~# cat /proc/ meminfo | grep Huge
AnonHugePages : 0 kB
ShmemHugePages : 0 kB
FileHugePages : 0 kB
HugePages Total : 300
HugePages Free : 281
HugePages_Rsvd : 72
HugePages Surp : 0
Hugepagesize : 2048 kB
Hugetlb : 614400 kB
There are 72 pages allocated in the virtual address space, which is 144 MB. Of these, the buffer pool (
shared buffers = 128 MB) takes up 128 MB. It is allocated but not used, since these pages were
not accessed (the buffer pool is not full), so the free -- mega command will show that after starting the

instance, the free memory has decreased by only 8 MB:
root@tantor :~# free --mega

total used free shared buff/cache available

Mem : 2074 1378 371 12 505 696

Mem : 2074 1386 363 14 506 688

Using Huge Pages Instance

= Huge Pages are used for the shared buffer pool and Dynamic Shared
Memory (DSA) memory , which is used by parallel processes

= memory is allocated in the manner specified by the
shared memory type parameter

= in linux Large page memory allocation is only supported by the mmap
method ('anonymous ' pages) .

= Huge Pages are not pushed to swap.

= If this amount of memory is not enough, then parallel processes will
additionally allocate (and then free) memory in 4Kb pages and in the
manner specified in the dynamic shared memory type parameter

postgres =# select name, setting, enumvals from pg settings where name like '$ memory type ';
name | setting | enumvals

____________________________ +_________+___________________

dynamic shared memory type | posix | { posix, sysv, mmap }

shared memory type | mmap | { sysv ,mmap }

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 52

Using Huge Pages Instance

The largest size in an instance is the buffer pool. In busy instances, parallelization of command
execution is usually used. HP allocation is a relatively long operation, so Huge Pages are used only for
the shared buffer pool and memory used by parallel processes (parallel workers) . The size of the
buffer pool is specified by the shared buffers parameter . Memory is allocated in the manner
specified by the shared memory type parameter . In Linux Memory allocation by large pages is
supported by the mmap method (" anonymous " pages) . Large pages are not pushed out to swap.

HP can also be used by parallel processes. The amount of reserved HP is specified by the
min dynamic shared memory parameter . If this amount of memory is not enough, parallel processes
will additionally allocate (and then free) memory in the manner specified by the
dynamic shared memory type parameter

postgres =# select name, setting, enumvals from pg settings

where name like '$ memory type ';

name | setting | enumvals

____________________________ +__________|____________________
dynamic shared memory type | posix | { posix , sysv , mmap }
shared memory type | mmap | { sysv , mmap }

The default values are optimal and should not be changed.

posix - memory is allocated in regular 4K pages using the shm open system call . You should not use
the mmap value for the parameter dynamic_shared memory type , since when using mmap the
directory on disk PGDATA/ pg dynshmem is used (created if not created) and the files in it will be used
to display shared memory between parallel processes if they do not have enough memory reserved by
min_dynamic_shared memory . When min_dynamic_shared memory is exhausted Parallel
processes allocate memory in regular pages. For the shared memory type parameter, Yyou need to
use the value mmap

Whether an instance can use Huge Pages is controlled by the huge pages parameter . The default
value is try . This means that if the instance succeeds in allocating Huge Pages when it starts , then
they will be allocated and used. If it fails, then they will not be used at all.

https://www.cybertec-postgresgl.com/en/huge-pages-postgresql/

If the PostgreSQL configuration parameter huge pages = on , and HugePages pages if there is not
enough when starting the instance, the instance will not start.
root@tantor :~# sysctl -w vm.nr hugepages =300
vm.nr hugepages = 300
root@tantor :~# systemctl restart postgresql
postgres@tantor :~$ psql -p 5435 -c "show shared buffers ;"
shared buffers

(1 row)

root@tantor :~# cat /proc/ meminfo | grep HugeP

HugePages Total : 300

HugePages Free : 281

HugePages Rsvd : 72

HugePages Surp : 0

72 were allocated large pages. Of these, 64 pages are directly under the shared pool.
The HugePages Rsvd value may not increase, but then the HP allocation will indicate a
decrease in value HugePages Free

postgres@tantor :~$ psql -p 5435 -c "alter system set min_dynamic_shared memory =' 200MB

T .n
’

ALTER SYSTEM
postgres@tantor :~$ sudo systemctl restart postgresql
postgres@tantor :~$ cat /proc/ meminfo | grep HugeP
HugePages Total : 300
HugePages Free : 280
HugePages Rsvd : 1 71
HugePages Surp : 0
200MB has been allocated for use by parallel processes.
List of processes using HP:
root@tantor :~# grep " KernelPageSize : 2048 kB " /proc/[[:digit:]]*/ smaps |
awk {'print $1'} | cut -d "/" -£3 | sort | unigq
62133

Size and type of HP used by the process :

root@tantor :~# cat /proc/ 62133 / smaps_rollup | grep tlb

Shared Hugetlb : 30720 kB

Private Hugetlb : 10240 kB

postgres process from Astralinux PostgreSQL.

It is possible to check on a stopped instance how many HP pages with the current configuration
parameter settings the instance can request at startup:

postgres@tantor :~$ / usr /lib/ postgresql /15/bin/ postgres -c config file
=/etc/ postgresql /15/main/ postgresql.conf -D / var /lib/ postgresql /15/main -C
shared memory size in huge pages

91

The number 91 was given, 72 pages were allocated at launch.

For dynamic shared memory type = posix pages are not swapped , but memory mappings are
created in the form of directory files mounted on a tmpfs file system :

postgres@tantor :~ $ 1ls -al /dev/ shm

total 1136

- rw —-————-—- 1 postgres postgres 1048576 PostgreSQL.1357156412
- rw ——————- 1 postgres postgres 108576 PostgreSQL.2756012128
- WX —-———-—- 1 astra astra 32 sem.user 1000 label none

In version 17, a descriptive (readable) parameter huge pages status appeared , which shows
whether HP is used by the instance.

Transparent huge pages

= slow down the work of DBMS processes
= not highlighted if

> AnonHugePages : 0 kB
= check if use is enabled:

root@tantor :~# cat /sys/kernel/mm/ transparent hugepage
/enabled

always [madvise] never

root@tantor :~# cat /sys/kernel/mm/ transparent hugepage
/defrag

always defer defer+madvise [madvise] never

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 54

Transparent Huge Pages

Beyond Huge Pages in Linux available for use transparent huge pages (Transparent Huge Pages ,
THP), which appeared in the Linux kernel 2.6.38 in 2012.

THP slows down the DBMS and THP is not worth using at this time .

The use of THP is indicated by the line AnonHugePages :

root@tantor :~# cat /proc/ meminfo

AnonHugePages : 0 kB

ShmemHugePages : 0 kB

FileHugePages : 0 kB

check if THP is disabled using the command:

root@tantor :~# cat /sys/kernel/mm/ transparent hugepage /enabled

always [madvise] never

The current value is highlighted in square brackets . The value is never disables the use of THP. The
value madvise allows processes to request the use of THP via the madvise () system call .
PostgreSQL does not use such a system call, so it is sufficient to check that the parameter value is not
setto always .

With THP , " defragmentation " of THP pages is used . You can check the defragmentation mode with
the command:

root@tantor :~# cat /sys/kernel/mm/ transparent hugepage /defrag

always defer defer+madvise [madvise] never

Meaning of always or defer leads to synchronous defragmentation (direct compaction), blocking
the work of processes. For the most part, the lack of optimization of defragmentation and the slow
movement of huge ("huge") memory ranges are the reason for the slowdown of applications when
using THP.

You can change the values using the commands:

echo never > /sys/kernel/mm/ transparent hugepage /enabled

echo never > /sys/kernel/mm/ transparent hugepage /defrag

To save the disabled state after reboot, and also during the Linux startup process THP was not used,
you can specify this in the Linux boot loader parameters .

Non-Uniform Memory Access (NUMA)

Non-Uniform Memory Access

(non-uniform memory access) : (T ()

= Each processor has local physical iR 2 3
memory and accesses it in the normal 2| Bl 2l z
way through its memory controller. In é § § é
addition, each processor has access to S (.) (.

the local memory of other processors ;’ " Memory
through a slower 1/0 bus R " O "

- PostgreSQL is optimized to work with Processort Processorz
uniform access to physical memory. and
is not optimized for NUMA

High speed tire
(Interconnect)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Non-Uniform Memory Access (NUMA)

NUMA (Non-Uniform Memory Access (non-uniform memory access) is a hardware architecture in
which each processor has local physical memory and accesses it in the normal way through its memory
controller. In addition, each processor has access to the local memory of other processors through a
slower I/0 bus.

UMA (Uniform Memory Access (uniform memory access) is used in SMP (symmetric
multiprocessing). Processors use physical memory simultaneously. Access speed does not depend on
which processor is accessing the memory, nor on which memory chip contains the required data. Each
processor can use its local caches .

PostgreSQL is optimized to work with Uniform Memory Access (UMA) and is not optimized for working
with NUMA |, at least because the buffer cache is uniform.

When using hardware that has the ability to use NUMA | in the firmware (BIOS) of such equipment
there may be a parameter called "Node Interleaving” or "Memory Nodes" (alternation of memory
nodes) . This parameter must be enabled, then the presence of NUMA will not be represented by the
operating system and the memory allocated by the operating system will be automatically distributed
between memory nodes .

If this is not done, then by default shared memory structures (buffer cache, log cache, and others) will
be allocated, if possible, in the local memory of one processor (on which the postgres process is
running) and all other processors will have slow access (via a slower I/0O bus) to the shared memory
structures. This will be worse than if the physical memory in which the shared memory structures are
allocated were evenly distributed among the local memories of all processors (Memory Nodes) .

Each processor has its own memory access interface and its own cache contents (L1, L2, L3) and
buffers (TLB). If there are several processors, it may be optimal, so that processes are executed on
the same processor whenever possible, rather than migrating between processors. Migration between
cores of the same processor does not matter. The task of binding processes to processors is called
CPU affinity . The relevance of the task increases if the number of active processes is much greater
than the number of processor cores.

NLor

2-2

Out of memory

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 56

Out of Memory (OOM)

e processes are senta SIGKILL signal

= the best candidate is considered to be the process
that
> will free up maximum memory
> is the least important for the system
> |ldeally, one process should stop

= The score for each process is pre-calculated and
stored in /proc/PID/oom score

= Process termination messages are written to the
operating system log

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Out of Memory (OOM)

The operating system tries to use all the RAM so that it does not " sit idle " . Memory that is not used
by processes is used by the page cache . In the page cache, some pages may be " dirty " and such
memory is not released quickly, since the pages need to be written to the disk. If processes request
memory, then part of the page cache is released to allocate memory. To avoid a situation where the
allocation takes a long time and slows down the work of all processes, memory can be released in
Linux by forcibly stopping processes that consume a lot of memory. This is done by the oom killer
process . It stops processes by sending them the SIGKILL signal .

Oom Kkiller algorithm , by which the process or processes are selected to be stopped is considered "
heuristic " . The algorithm takes into account many parameters and can change from version to version
of Linux . The best candidate is considered to be the process that will free up the maximum amount of
memory, and is also the least important for the system. It is also desirable to stop a smaller number of
processes, so processes that have allocated a lot of memory are selected. The score for each process
can be viewed in /proc/PID/ oom_score . The higher the number, the more likely it is that this
process will be stopped.

oom kill message in the operating system log :

Out of memory: Kill process 58302 (postmaster) score 837 or sacrifice child

Killed process 58302 (postmaster) total-vm:72328760kB, anon - rss :55470760kB,

file - rss :4753180kB

" total-vm " - the size of virtual memory used by the process. " - rss " - the portion of virtual
memory that is mapped to RAM (allocated and used) .

"anon - rss " - memory allocated by the process in physical pages of RAM and has no mapping to
files and devices (no name, anonymous).

For example, if a process executes the malloc () system call allocating 1GB and writes or reads
from the allocated 1GB, then " anon - rss " and " total-vm " will increase by 1GB. If the process
does not write or read, then " total-vm " will increase by 1GB, and " anon - rss " will not change.

"file - rss " - memory allocated in physical pages of RAM and mapped to files or devices. " file
- rss " will be high if you open a large file for reading and read its contents.

https://www.baeldung.com/linux/processes-memory-short

Resident Set Size (RSS)

= RSS (resident size) - the amount of memory allocated
to the process and located in physical memory

= PSS (proportional size) provides a complete picture
of the distribution of physical memory between
processes and shared libraries

= attractiveness of the process for oom kill
> /proc/'SPID'/ oom score

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 58

Resident Set Size (RSS)

" - rss "means, which is displayed in the OOM kill message and linux statistics .

RSS (Resident Set Size) - the amount of memory allocated to the process by the operating system and
currently in RAM (physical memory). Does not include pages of memory in the swap space (swap size)
This takes into account the physical memory allocated for shared libraries that the process uses.

RSS inflates memory usage .

PSS (Proportional Set Size) provides a complete picture of the distribution of physical memory
between processes and shared libraries.

To determine PSS, you can use the smem utility or the command:
for PID in $(pgrep " postgres "); do awk '/ Pss / {PSS+=$2} END { getline cmd <

"/proc/'$PID'/ cmdline "; sub("\0", " ", cmd); getline oom < " /proc/'S$PID'/
oom score "; printf "$.0f - %s -> %s (PID %s) \n", PSS, oom , cmd , '$PID'}'

/proc/$PID/ smaps ; done|sort -n -r

Example: if a library uses 100Kb, and the library is used by 10 processes, then each process's memory
RSS will additionally take into account 100Kb. PSS in this example will add 10Kb to each process’s
memory, i.e. it will divide the memory used by the library proportionally between the processes using
the library. Of course, one process could force the library to actively use memory for its own service,
but for the purpose of estimating the memory used, this does not matter.

Example:

P.S.S. Without HP:

66573 - 85 -> / usr /lib/ postgresgl /15/bin/postgres (PID 58302)

5799 - 669 -> postgres: 15/main: walwriter (PID 58308)

3726 - 669 -> postgres: 15/main: autovacuum launcher (PID 58309)

3212 - 668 —-> postgres: 15/main: logical replication launcher (PID 58310)

2913 - 668 -> postgres: 15/main: background writer (PID 58306)

1716 - 668 -> postgres: 15/main: checkpointer (PID 58305)

1507 - 668 —> postgres: 15/main: logger (PID 58304)

Sum: 66573 (for the postgres process) + 18873 (first column of the remaining rows) = 85446

root@tantor :~# free
total used free shared buff/cache available
Mem : 2025796 647160 846888 47436 611812 1378636

P.S.S. with HP:

7583 - 74 -> / usr /lib/ postgresqgl /15/bin/postgres (PID 58353)

2966 - 668 -> postgres: 15/main: autovacuum launcher (PID 58359)

2724 - 668 -> postgres: 15/main: logical replication launcher (PID 58360)

1528 - 668 -> postgres: 15/main: checkpointer (PID 58355)

1508 - 668 —-> postgres: 15/main: logger (PID 58354)

1493 - 668 -> postgres: 15/main: walwriter (PID 58358)

1469 - 668 -> postgres: 15/main: background writer (PID 58356)

Sum 7583 (for the postgres process) + 11688 = 19271

root@tantor :~# free
total used free shared buff/cache available
Mem : 2025796 1022900 471092 12624 577048 1002896
Output of the free command by default in kilobytes. After increasing the number of huge pages, the
command output shows the values of free and available decreases and the used value increases .

oom_score the postgres process has decreased slightly due to the fact that significantly less memory
is now taken into account: for PSS itwas 66573 , now itis 7583 . For RSS there is a similar reduction.

When using HP size The memory of the instance processes, which PSS shows , has decreased several
times (was 85446 , became 19271). The amount of memory with which the instance works has
remained approximately the same.

It is difficult to estimate how much the performance will increase based on the indicators. It is even
more difficult to determine the mechanism of the increase. On small memory volumes, the fact that HP
are not forced out of memory, which ensures more predictable operation. On large amounts of RAM
Fast access will be provided to pages referenced in the TLB.

Example: number of unemployed operating system (under the Linux kernel pages) and libraries)
entries in the TLB 1,024 . For normal pages of 4K size, fast access (via TLB) will be to 1,000 * 4K = 4MB
of memory. For HP of 2MB, fast access will be up to 2GB of memory.

In any case, using HP with DBMS wiill not lead to performance degradation, unlike THP.

https://www.percona.com/blog/why-linux-hugepages-are-super-important-for-database-servers-a-
case-with-postgresqgl/

oom score adj parameter

= The value is set after startup for each process:
> echo -900 > /proc/ 58253 / oom score adj
= changes /proc/PID/ oom score for this process
= value -1000 for postgres process Installed in the
Tantor DBMS service file tantor-se-server-
16.service
= for other instance processes the default value does
not change and is set to zero

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 60

oom_score_ad]j parameter

In the example given earlier, oom score was output instance processes. The postgres process
oom_score was 74 or 85, the other processes had 668-669. How was the scoring lowered ? Because
the oom_score adj value was changed and setto -900

root@tantor :~# cat /proc/ 58253 / oom score_adj

-900

The remaining instance processes use the default value of zero:

root@tantor :~# cat /proc/ 58359 / oom score adj
0 If you change the value of the
postgres process on the fly :

root@tantor :~# echo 0 > /proc/ 58253 / oom_score_ adj

then the oom_score value for the postmaster will be approximately the same as for the other
processes in the instance:

root@tantor :~# cat /proc/ 58253 / oom_ score

673

postgres process spawns other instance processes and the com score adj value Notinherited by
child processes.

Stopping any process with SIGKILL signal causes the instance to be restarted by the postgres
process. However, stopping the postgres process with the SIGKILL signal worse. Therefore, the
postgres process is set to oom score adj . The Tantor DBMS sets the value to " -1000 " and
oom_score Will be equal to zero. This is done by a directive in the Tantor DBMS service file tantor-
se-server-16.service

Prevents OOM kill from killing the postmaster process

OOMScoreAdjust = -1000

... but allows you to kill processes that postmaster spawns

Environment = PG OOM ADJUST FILE =/proc/self/ oom score adj

Environment = PG OOM ADJUST VALUE = 0

You can change oom score adj replacing the remaining processes of the instance in the service file
O for example to -300. Change ocom score adj only makes sense if the host has multiple instances of
processes running, or processes that consume a lot of memory . The options set the environment
variables before starting the postgres process .

https://docs.tantorlabs.ru/tdb/ru/15_6/se/kernel-resources.html#LINUX-MEMORY-OVERCOMMIT

vm.overcommit memory parameter

* has three meanings:

— 0 - default value. Allocates as much memory as the process
requests.

~1 - not used with DBMS.

-2 - memory allocation failure if the total amount of allocated memory

exceeds the size of the swap space plus the amount of physical

memory multiplied by the percentage value of the

vm.overcommit ratio parameter (default 50%) or absolute value

specified by vm.overcommit kbytes

-if the swap partition is disabled and vm.overcommit ratio <100 ,

then you shouldn't set the value to 2, it should be O

*vm.overcommit ratio parameter does not matter when the

vm.overcommit_memory parameter is set to 0Oorl

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 61

vm.overcommit memory parameter

Let's look at the parameters that directly affect the triggering of OOM kill or the issuance of a message
to the process about insufficient memory. The formula that links the parameters is shown on the next
slide. Changing one parameter without taking into account the values of the others can lead to the
triggering of OOM kill or a refusal to allocate memory even if there is enough memory.

vm parameter . overcommit memory can be set to one of three values:

*0 - default value. Allocates as much memory as the process requests. Only those pages that will be
used by the process are swapped / res erved . The mmap memory allocation system call (you can see
the description of the call with the man mmap command) without the MAP_NORESERVE option , it does
not check how much memory is available and tells the process that the memory is allocated. If you try
to use the allocated memory, there is a chance that an oom -kill will be triggered.

1 - checking how much memory is available is not performed. This mode is usually used for scientific
tasks working with large arrays. It is not used with DBMS.

*2 - memory allocation failure if the total amount of allocated memory exceeds the size of the swap
space plus the amount of physical memory multiplied by the percentage value of the
vm.overcommit ratio parameter (default 50%, value chosen based on the fact that swap partition
is equal to 50% of physical memory) or absolute value specified by vm.overcommit kbytes
parameter .

vm.overcommit ratio parameter does not matter when the vm.overcommit_memory. parameter is
set to Oorl.

The choice for the host servicing the DBMS comes down to the values O and 2.

The current values of the memory volume that can be selected can be viewed using the command:

cat /proc/ meminfo | grep Commit

If the swap partition is disabled And vim.overcommit ratio <100 , then you should not set the value
to 2.

Setting the value to 2 will cause processes to receive a memory allocation error instead of triggering
oom Kill .

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Setting overcommit and swap values

= when servicing in Linux only DBMS it is worth setting the values
vm.overcommit ratio=100 , vmn.overcommit memory=2
> with such values oom triggering kill is unlikely and will use all physical
memory
> it will be possible to disable the swap partition without increasing the
probability of oom Kkill triggering
> if you set the value vin.overcommit ratio > 100 the probability
of oom triggering increases Kill a
= The total size of virtual memory that can be allocated is determined
by the formula:
CommitLimit =(total RAM - total huge TLB)*
vm.overcommit ratio /100+total swap
= active use of the swap partition takes up I/0 bus bandwidth

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 62

Setting overcommit and swap values

The total amount of virtual memory that can be allocated. is determined by the formula:

CommitLimit =(total RAM-total huge TLB)* vm.overcommit ratio /100+total swap

This formula relates the size of the swap partitions (files) and memory that can be allocated to
processes.

The use of swap is undesirable because it slows down and worsens the responsiveness of all
processes, since the I/O bus is used. When using NVMe as a swap partition , the I/0O speed is
comparable to the access speed of physical memory and using swap may make sense. The
disadvantage may be that PCle lines will be used by the NVMe device. If the PCle bandwidth is a
bottleneck, then access to the disks on which the database cluster files are located will slow down and
in this case, using swap is undesirable.

What is the advantage of having even a small swap partition ? Processes request memory with
rounding and some pages of allocated memory may not be used until the memory is freed. Such pages
can be pushed out to swap without affecting performance. Without swap, such pages are in physical
memory and physical memory is " underused " , but could be used (during normal operation for page
cache).

What values should be set in the absence of swapping and at the same time reduce the probability of
OOM-kill triggering? You need to set vm.overcommit ratio = 100 and vm . overcommit memory
= 2 . With such values, according to the formula CommitLimit = total RAM . With such values, the
oom- Kkill triggering kill is unlikely and all physical memory will be used. If set the value of
vm.overcommit ratio greater than 100 , then the probability of triggering oom kill increases .

If oom Kill is triggered and sends a SIGKILL signal to the PostgreSQL instance process , the postmaster
process stops all instance processes and starts them again. This has the effect of restarting the
instance. If the postmaster fails to restart the processes, the postmaster stops and the instance
becomes unavailable. It is also possible that when restarting the processes, one of the background
processes (checkpointer) will hang . In this case, the instance will have to be stopped with the
pg ctl stop -m immediate command . The pg stl stop command in this case it will hang , and
systemctl stop will not stop the processes.

vm.swappiness parameter

= by default the value is 60

= You can change the value without restarting the operating
system

= the optimal value is about 10

= value O should not be used

= affects which parts of memory will be candidates for
displacement to swap:
> anon prio = swappiness;
> file prio = 200 - anon prio;

= linux log message about stopping the process :

OutC Of memory: K11l ProcCess o330 (POSCMaster) ScCOre 837 Or sacrirfice child
Killed process 58302 (postmaster) total-vm:72328760kB, anon -rss:55470760kB, file -
roes-47°53180kR

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 63

vm.swappiness parameter

vm.swappiness parameter affects the likelihood of using swap if it is used.

The default value is 60:

root@tantor :~# sysctl -a | grep swap

vm.swappiness = 60

For a host with physical memory greater than 8-16 GB, the value 60 is not optimal. The optimal value is
about 10 . It is worth changing the value in small increments, monitoring the result (whether any pages
will be pushed out to the swap partition; during normal operation, they should not be pushed out). You
can change the value without restarting the operating system by editing the file /etc/ sysctl.conf
and applying the changes with the sysctl -p command .

/ *

* With swappiness at 100, anonymous and file have the same priority.

* This scanning priority is essentially the inverse of IO cost.

*/

anon prio = swappiness ;

file prio = 200 - anon prio ;

The value O tells the linux kernel avoid page evictions as much as possible. This value on modern
versions of linux not worth using, as OOM Kkiller can work even if there is free swap space. OOM is
usually easier terminate the process rather than release memory from file cache. Example of a linux log
message about stopping the process :

Out of memory: Kill process 58302 (postmaster) score 837 or sacrifice child

Killed process 58302 (postmaster) total-vm:72328760kB, anon -rss:55470760kB,

file -rss:4753180kB

Swapping is optional and can be disabled. By using swapping , the operating system can run programs
that require more memory than is physically available. It also helps prevent the system from crashing if
it runs out of RAM. Performance is also improved by increasing the file cache.

https://eklitzke.org/swappiness

Memory Page Deduplication (KSM)

Kernel Same-page Merging (memory page deduplication):

= can merge local memory pages anon- rss different
processes

= does not merge file- rss and shared memory

= used in virtualization, not with DBMS

= memory scans for identical pages linux service

check that KSM is disabled using the command:

cat /sys/kernel/mm/ ksm /run

0

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 64

Memory Page Deduplication (KSM)

KSM (kernel same-page merging , deduplication of memory pages) allows the Linux kernel since
version 2.6.32 to merge identical memory pages anon- rss (butnot file- rss) used by different
processes into one page for sharing. Shared memory is not deduplicated . Identical pages of local
memory of processes are merged into one and marked as subject to copy on modification (writing to
the page), so that the pages are shared when modified by one of the processes.

It has the greatest effect when running virtual machines from similar images.

KSM parameters and statistics are located in files in the /sys/kernel/mm/ ksm directory :

ls /sys/kernel/mm/ ksm

full scans merge across nodes pages to scan sleep millisecs use zero pages
general profit pages_ scanned pages_unshared stable node chains
ksm zero pages pages_shared pages _volatile stable node chains prune millisecs

max_page sharing pages_sharing run stable node dups

To work effectively, it requires the ksm service , which scans memory for duplicate pages.
Not used with DBMS.

Disabled by default. You can check that it is disabled with the command:
cat /sys/kernel/mm/ ksm /run

0

Zero - disabled.

Check that ksm if it didn't work, you can use the command:

cat /proc/ vmstat | grep ksm

ksm swpin copy 0

cow ksm O

Zero means there was no activity.

https://docs.kernel.org/admin-guide/mm/ksm.html

Local memory allocation by instance processes

= PostgreSQL implements memory management logic through " memory
contexts "

- palloc () is used , which allocates memory in a memory area called
MemoryContext , which is also called the "Arena"

= memory contexts form a hierarchy

= TopMemoryContext - the root of the server process memory context
hierarchy

= when a memory allocation request is made, the memory size allocated is
the nearest power of 2 to the larger side of the requested size

= if there is not enough free memory in the context, then memory is
added to it in double the size of the initial one

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Allocating memory to instance processes

To reduce the likelihood of memory leaks, PostgreSQL implements memory management logic through
" memory contexts ". The program code does not call the operating system every time by malloc ().
When memory needs to be allocated, it uses the palloc () call , which allocates memory in a memory
area called MemoryContext , which is also called the "Arena". MemoryContext is notable for the fact
that it can completely free the memory allocated for it and there is no need to keep track of multiple
calls to allocate memory. The main thing is that the memory is allocated in a context with a suitable
lifetime. After the context's lifetime expires, there is no danger of leakage (non-release) of memory.
For example, at the beginning of a transaction, TopTransactionContext is allocated , the memory of
which will be freed upon completion of the transaction. The amount of memory allocated to the context
can be significant. The second aspect of contexts is to minimize the number of malloc () calls and
allocate memory in advance in large chunks with rounding by powers of two .

Memory contexts form a hierarchy. TopMemoryContext is the root of the server process's memory
context hierarchy. All other memory contexts have a parent context. When the program code deletes a
memory context (completion of a transaction, closing a cursor, portal), all child contexts are deleted.

Memory can be allocated using Slab logic (slab.c). This is the implementation of MemoryContext ,
when memory is allocated in equal sizes (chunks) . The chunk size is specified when creating a
context of this type. Memory chunks of different sizes are called blocks , not chunks . The AllocSet (
aset.c) and Generation (generation.c , blocks with a similar lifetime) logic are used more often . The
peculiarity of the memory management logic of these contexts is that when requesting memory
allocation, the memory size allocated is the closest power of 2 up from the requested size ("round
request sizes up to the next power of 2"). For example, if 600 KB is requested, then 1 MB is allocated.
If exactly 1 MB is requested, then 1 MB is allocated.

If there is not enough free memory in the context, then memory is added to it (by calling malloc ()) in
double the size of the initial . The block can be limited to 1 GB or 2 GB (when using enable-large-
allocations), but not in all cases. The part of memory allocated with reserve
may not be used (read and written), but it will be taken into account in the
operating system as allocated in the virtual address space. It 1is better not to
bring the operating system to a lack of physical memory: linux page cache must be large
(comparable in size to the buffer cache). Linux Page Cache uses almost all unused physical memory
and serves as a reserve for servicing memory allocation requests.

Memory allocation in generation.c :

/*

* The first such block has size initBlockSize , and we double the

* space in each succeeding block , but not more than maxBlockSize

*/

blksize = set-> nextBlockSize ;

set-> nextBlockSize << = 1;

if (set-> nextBlockSize > set-> maxBlockSize)

set-> nextBlockSize = set-> maxBlockSize ;

/* we'll need a block hdr too, so add that to the required size */
required size += Generation BLOCKHDRSZ ;

/* round the size up to the next power of 2 */
if (blksize < required size)
blksize = pg nextpower2 size t(required size);

block = (GenerationBlock *) malloc (blksize);

if (block == NULL)
return NULL;

context-> mem allocated += blksize ;

In practice, this chapter will include an example where, when loading a 1GB file, the server process

allocates 6GB of virtual memory when reading a 1GB dump file :
Killed process 12518 (postgres) total-vm: 6523848kB , anon-rss:3151300kB

An example of analysis of memory allocation and deallocation by contexts:

https://dev.to/yugabyte/postgres-memory-allocation-and-os-memory-allocation-30f1

"operating system reporting 70M and the PostgreSQL level memory dump saying it released memory
down to approximately 1M!

What we see is ‘Arena 0O', which is roughly put the administration of memory allocations of malloc ()
for this process, which has allocated from ‘system’ 63832064 bytes (60.9M), while actually in use (by
PostgreSQL) is 917696 bytes (1M). What malloc () tries to do, is keep memory allocated to prevent
having to deallocate and allocate over and over ."

Once memory has been allocated for a context, it is not returned to the operating system. The memory
will be returned during the lifetime of the server process, when the context's life cycle ends and the
context is freed.

In the report https://pgconf.ru/media/2024/10/21/12/613/ Alexandrov . pdf

CachedPlan contexts is considered for 5 private plans and one common one, each 32MB in size
each in the parent context CacheMemoryContext . Memory allocated for the context is 192 MB (total
memory of the server process at the time of memory release in the context USS 188.7M , PSS 189.5 M,
RSS 195.0M) was not returned to the operating system .

ERROR: invalid memory alloc request size

= Error reason: attempt to allocate a block of memory exceeding the 2GB
or 1GB-1 limit set by the MaxAllocSize macro

= in text functions like Ipad , rereat checks are inserted that return an
error: requested length too large

= if the memory size after the error text is more than 2GB, this means that
the memory size that should be allocated is calculated incorrectly and
may indicate the presence of corruption of records in data blocks
> also the calculation may be performed incorrectly due to errors in the

extension libraries loaded into the process memory
= Example of commands that lead to errors:

postgres =# create table a as select repeat('a', 1024 * 1024 * 1024 - 5);
ERROR: invalid memory alloc request size 1073741887

postgres =# select repeat('x', 1024 * 1024 * 1024);

ERROR: requested length too large

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 67

Allocating memory to instance processes

The program code of the instance process does not make calls to the operating system every time it
calls malloc (). If the context allocates memory of a uniform size, it is called a chunk , if of an arbitrary
size, it is called a block . If there is not enough memory in the context, a call to malloc () is sent to the
operating system . Before executing the call, a check is made whether the requested size will exceed
the limit:

#define AllocSizeIsValid (size) ((Size) (size) <= MaxAllocSize)

which is set by the macro:

fdefine MaxAllocSize ((Size) Ox3fffffff) /* 1 gigabyte - 1 */

The error with the text "invalid memory alloc request size" is caused by a check for exceeding this
limitation.

Similar errors:

array size exceeds the maximum allowed

Text functions like Ipad (..) , repeat(..) have checks inserted that produce a less scary error:

requested length too large.

Dynamic Shared Memory (DSA) memory allocation also has checks. The error text when the limits are
exceeded is "invalid DSA memory alloc request size™ .

If the memory size after the error text is more than 2GB, this means that the memory size that should
be allocated is calculated incorrectly and may indicate that there is corruption of records in the blocks.
data . Also, the calculation may be performed incorrectly due to errors in the extension libraries loaded
into the process memory.

Contexts can allocate blocks and chunks larger than 1GB, but then an operating system error will be
issued - either out of memory , or Cannot allocate memory , or the process will be stopped by oom Kkill .

The total size of the context can exceed 1 GB, the allocation of a block or chunk larger than 1 GB-1 is
limited. Example of description of context sizes:

CacheMemoryContext : 59375840 total in 21 blocks; 8112520 free (13 chunks)

CachedPlan : 34199136 total in 24 blocks; 7386392 free (0 chunks)

0 chunks means that the context allocates memory not in chunks , but in pieces of variable size, that
is, blocks.

Parameter enable large allocations

= Tantor DBMS parameter that increases the size of StringBuffer from 1
gigabyte to 2 gigabytes

postgres =# select * from pg settings where name like '$large$%'\ gx

name | enable large allocations

setting | off

category | Resource Usage/Memory

short desc | whether to use large memory buffer greater than 1Gb, up to 2Gb
context | superuser

vartype | bool

boot val | off

= can be set at session level and by pg_dump , pg_dumpall utilities

postgres@tantor :~$ pg_dump --help | grep alloc
4 --enable-large-allocations enable memory allocations with size up to 2Gb

applications, Integrated automation, Manufacturing enterprise
management

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 68

enable_large_allocations parameter

Tantor 16.2 DBMS parameter that increases the size of StringBuffer in the local memory of instance
processes from 1 gigabyte to 2 gigabytes . The size of one table row when executing SQL commands
must fit in StringBuffer . If it does not fit, then any client with which the server process works will
receive an error, including the pg dump utilities and pg dumpall . The size of a table row field of
all types cannot exceed 1GB, but there can be several columns in a table and the row size can exceed
both a gigabyte and several gigabytes.

pg_dump utility may refuse to dump such lines because it does not use the WITH BINARY option
CoPY commands . For text fields, a non-printable character occupying one byte will be replaced by a
sequence of printable characters occupying 2 bytes (for example, \n) and the text field can increase in
size up to twice.

postgres =# select * from pg settings where name like '$large%'\ gx

name | enable large allocations

setting | off

category | Resource Usage/Memory

short desc | whether to use large memory buffer greater than 1Gb, up to 2Gb

context | superuser

vartype | bool

boot val | off

and for command line utilities :

postgres@tantor :~$ pg _dump --help | grep alloc

-—enable-large-allocations enable memory allocations with size up to 2Gb

The parameter can be set at the session level. StringBuffer is allocated dynamically during the
processing of each line, and not when the server process is started. If there are no such lines, the
parameter does not affect the operation of the server process.

This problem occurs with the config table row 1C:ERP applications, Integrated automation,

Manufacturing enterprise management . Example:

pg dump : error: Dumping the contents of table " config " failed: PQgetResult () failed.
Error message from server: ERROR: invalid memory alloc request size 1462250959

The command was: COPY public.config

(filename, creation, modified, attributes, datasize , binarydata) TO stdout ;

NLor

2-3

Page cache

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 69

Linux Page Cache

Page cache (operating system cache, file cache):

= cache of 4K pages mapped to files in the file system

= Under the linux page cache can use all free (not occupied by
processes and the kernel) physical memory, except for the part whose
size is indirectly determined by the vm.min free kbytes parameter
> The parameter does not allow using all physical memory for page

cache

> default value is not greater than 66 Mb

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 70

Linux Page Cache

Page cache (operating system cache, file cache) is a cache of 4K pages mapped to files in the file
system. Current cache size:

root@tantor :~# cat /proc/ meminfo | grep Cached

With ached: 898924 kB

SwapCached : 0 kB

The command output also includes memory-mapped pages of executable code (executable files and
libraries).

Under the linux page cache can use all free memory, except for a part whose size is indirectly
determined by the parameter vm.min free kbytes . This parameter determines the threshold values
(boundaries) for triggering the kernel swap daemon processes (kswapdN), by which processes start
and stop clearing physical memory from dirty blocks by writing them to their original locations on the
disk. This parameter does not allow using all physical memory for the page cache. Also, if a process
wants to allocate memory greater than vm.min free kbytes and available (free or cat /proc/
meminfo | grep Available) there is no memory or it is fragmented, then the oom killer is
triggered .

When Linux is running normally the amount of memory not allocated for cache turns out to be
approximately equal to the value of vm.min free kbytes .

The default value (if physical memory is more than 4GB) is small and is equal to 66 MB :

root@tantor :~# sysctl -a | grep vm.min free

vm.min free kbytes = 67584

The percentage of dirty pages in physical memory is specified by the vm.dirty ratio and
vm.dirty background ratio parameters . The percentage is taken from the amount of physical
memory not occupied by processes and the kernel (available), and not from the amount of all physical
memory.

Once vm.dirty background ratio is reached , dirty pages are written to disk: kswapd marks
the pages, bdflush initiates the write, p dflush write. Upon reaching vm.dirty ratio (the value must
be greater than the first), processes that write to file blocks (dirty pages in the cache) are blocked. This
avoids oom kill , butintroduces delays in the operation of processes (responsiveness). There are no
recommendations for exact values, otherwise they would have been set. The typical range of values for
these parameters is 5-10% and 10-20%.

https://hydrusnetwork.github.io/hydrus/Fixing_Hydrus_Random_Crashes_Under_Linux.html

Percentage of modified (" dirty ") pages in cache

= The percentage of modified (" dirty ") pages in physical memory is
specified by the vm.dirty background ratio parameters and
vm.dirty ratio

= The percentage is taken from the volume of physical memory not
occupied by processes and the kernel (available), and not from the
volume of all physical memory.

= there are also parameters vm.dirty background bytes and
vm.dirty bytes , which specify absolute values, default is zero

= current values of the threshold for starting to write dirty pages to their
original locations (first in the background without blocking, then with
blocking), in the number of pages:

root@tantor :~# cat /proc/ vmstat | grep dirty
nr dirty 4

nr dirty threshold 152308

nr dirty background threshold 76061

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Percentage of modified ("dirty") pages in cache

There are also parameters vim.dirty background bytes and vm.dirty bytes , which set
absolute values, zero by default. If you set them, then not less than 1Gb and 100Mb.

Command echo 1 > /proc/sys/ vm / drop caches releases all clean cache pages. This
command can be used before running benchmarks to ensure that subsequent benchmark runs are not
affected by pages being cached from the previous benchmark run . After using the command on a host
with a large amount of physical memory, a large amount of memory may be freed up. The percentage
of dirty pages will increase dramatically because the percentage of dirty pages held is calculated as a
percentage of free physical memory, not total physical memory . The condition of an unfilled cache (a
large amount of free memory) is not typical of the normal mode in which the Linux operating system
operates .

View the set values:

root@tantor :~# sysctl -a | grep dirty\.*ratio

vm. dirty background ratio = 10

vm.dirty ratio = 20

The amount of memory available to processes :

root@tantor :~# free
total used free shared buff/cache available
Meme : 3908744 476408 428256 112560 3040044

Current values of the threshold for triggering the start of writing dirty pages to their original locations .
First in the background without blocking, then with blocking of processes that dirty (change the
contents) pages. Measured in the number of pages:

root@tantor :~# cat /proc/ vmstat | grep dirty

nr dirty 4

nr dirty threshold 152308

nr dirty background threshold 76061

There are few dirty pages , the cache with blank pages.

The threshold for the start of background recording is approximately equal to formula :
nr dirty background threshold (76061) ~ = 3040044 (free memory in kilobytes) *
dirty background ratio /4 (page size in kilobytes)

https://www.yugabyte.com/blog/linux-performance-tuning-memory-disk-i o/

Memory fragmentation

= fragmentation of the virtual memory address space is indicated by the
fact that there are more than 1000 pieces of memory 16Kb above 16MB

No:
root@tantor :~# cat /proc/ buddyinfo
Node O, DMA 100 12110113
Node O, DMA32 3173 856 529 000O0O0OO0CO
Node O, Normal 19030 8688 7823 000O0O0O0O0OO

= an example where most of the memory is in chunks no smaller than

4AMB:
root@tantor :~# cat /proc/ buddyinfo
Node O, DMA 000 000O0O0O0OT11S
Node O, DMA32 124 2 34222 2 863
Node O, Normal 10391 14 10 9 5 5 23 352

= each zone is divided into parts of the memory address space of size
(4096 bytes *2 "): 4 KB, 8 KB, 16 KB, 32Kb, 64Kb, 128Kb, 256Kb,
512Kb, 1Mb, 2Mb, 4Mb .

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025
Memory fragmentation

Fragmentation of the virtual address space is indicated by the fact that there are more than 16 KB of

memory pieces above 16 MB. No :
root@tantor :~# cat /proc/ buddyinfo

Node O, DMA 1 00
Node O, DMA32 3173 856 529 0 00O0O0OTO 0O
Node O, Normal 19030 8688 7823 0 0 0 0 0 0 O O

An example when most of the memory is in chunks no less than 4MB :
root@tantor :~# cat /proc/ buddyinfo

Node O, DMA 000 0O000O0OO0O0OT1S3
Node O, DMA32 1 2 4 2 3 4 2 2 2 2 863
Node O, Normal 1 03 91 14 10 9 5 5 23 352

Node O - physical processor number.
1)DMA - virtual memory with an offset from zero to 16 MB
2)DMA32 from 16 MB to 4GB
3)Normal - from 4GB to 2"48
Each zone is divided into parts of the memory address space of size (4096 bytes *2 *n): 4 KB, 8 KB,
16 KB, 32Kb, 64Kb, 128Kb, 256Kb, 512Kb, 1Mb, 2Mb, 4Mb .
Based on these data, the derived metric " index " is calculated :

root@tantor:~# cat /sys/kernel/debug/extfrag/extfrag index

Node 0, zone DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
Node 0, zone DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
Node 0, zone Normal -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 0.964 0.982 0.991 0.996

closer to -1 (often -1.000 is called minus thousand) everything is fine, closer to 1 - the memory is
fragmented , closer to O - not enough memory (needs to be freed). It is assumed that it can be used to
determine whether it is necessary to free up memory or defragment .

What fragmentation looks like from an administrator's perspective:

https://habr.com/ru/companies/odnoklassniki/articles/266005/

Kernel history of changes to deal with fragmentation:

https://habr.com/ru/companies/ruvds/articles/673024/

Memory defragmentation
= The default value for minimum free RAM may not be sufficient:

root@tantor :~# sysctl -a | grep min free
vm.min free kbytes = 67584

vm.min free kbytes

It is recommended to set it to 2% of the physical memory size.

= vm.watermark scale factor parameter sets the second boundary
for the defragmentation process

the default value is 0.1% (number 10) of the free physical memory size:

root@tantor :~# sysctl -a | grep watermark
vm.watermark boost factor = 15000
vm.watermark scale factor = 10

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 73

Memory defragmentation

If there is a lot of free memory (it is occupied by the page cache), and at the same time there are out
of memory errors, for example, oom kill is launched, then in this case you can effectively eliminate
fragmentation by simply freeing up the pieces of memory occupied by " clean ' cache pages:

root@tantor :~# echo 1 > /proc/sys/ vm / drop_caches

or

postgres@tantor :~# echo 1 | sudo tee /proc/sys/ vm / drop caches

Dirty pages are written to disk by the sync command .

also periodically run defragmentation during minimal loading of the operating system using the
command:

root@tantor :~# echo 1 > /proc/sys/ vm / compact memory

You can also configure defragmentation. The default value for the minimum free RAM size may not be
sufficient:

root@tantor :~# sysctl -a | grep min_ free

vm.min free kbytes = 67584

The page cache is the primary fragmenter of the virtual address space. Defragmentation is triggered
when free memory drops below vm.min free kbytes . Recommended to set to 2% of physical
memory size. Recommended range is 1-3%.

Parameter vm.watermark scale factor sets the second boundary for the defragmentation
process. The default value is 0.1% (number 10) of the free physical memory:

root@tantor :~# sysctl -a | grep watermark

vm.watermark boost factor = 15000

vm.watermark scale factor = 10

The maximum value of vm.watermark scale factor =1000 , which means 10% of free physical
memory. It is recommended to set it to 1%, i.e. a value of 100.

Linux Page Cache It cannot be switched off or limited in size.

https://www.alibabacloud.com/help/en/alinux/support/solutions-to-memory-fragmentation-in-linux-
operating-systems

Description of drop caches : https://www.kernel.org/doc/Documentation/sysctl/vm.txt

Dirty Page Retention Duration

= vm.dirty expire centisecs - how long a buffer can be dirty
before it is marked for writing

= vm.dirty writeback centisecs - the period of waiting
between writes to disk

* net.ipv4.tcp timestamps can reduce periodic delays due to
timestamp generation

Example settings:

.dirty expire centisecs = 500
.dirty writeback centisecs = 250
.swappiness = 10

.dirty ratio = 10

.dirty background ratio = 3
net.ipv4.tcp_timestamps=0

55§54

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 4

Duration of retention of dirty pages in cache

The duration of page retention from the moment of change is determined by the parameter:

vm.dirty expire centisecs -how long a buffer can be dirty before it is marked for writing . The
default value is 3000 (30 seconds) . The value can be reduced to 500 (5 seconds).

You can also set the parameters:

vm.dirty writeback centisecs - the wait period between writes to disk , default is 500 (5
seconds), can be reduced to 250 (2.5 seconds)

vm.swappiness = 10
vm.dirty ratio = 10
vm.dirty background ratio = 3

net.ipvéd.tcp timestamps=0

The last parameter is useful and can reduce periodic delays due to timestamp generation. The
parameter adds 12 bytes to the header of each TCP packet with a timestamp . The parameter is
described in RFC1323. It can be used in implementations of the BBR algorithm based on network delay
measurement . It is also used in the tcp tw reuse option , which allows reuse of TIME-WAIT
sockets in cases where it is considered safe.

https://www.enterprisedb.com/blog/tuning-debian-ubuntu-postgresq|

Parameter backend flush after

= the number of dirty blocks evicted from the buffer cache by each
server process, upon reaching which a command will be sent to evict
the file pages that correspond to these blocks from the page cache

= limits the amount of dirty pages in the page cache linux and reduces
the likelihood of performance degradation when performing fsync calls
on data files at the end of a checkpoint

\ dconfig *flush¥*

List of configuration parameters
Parameter | Value
________________________ +_______
backend flush after | O
bgwriter flush after | 512kB
checkpoint flush after | 256kB
wal writer flush after | 1MB

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

backend flush after parameter

PosgreSQL parameter backend flush after can be set to the number of dirty blocks that each
server process flushes from the buffer cache before sending a command to flush the file pages that
correspond to those blocks from the page cache. This parameter reduces the likelihood of a
performance hit when performing fsync calls on files at the end of a checkpoint. The default value is
zero (disabled), because it can cause a performance hit. This happens when the number of blocks that
all processes in the instance flush between checkpoints is greater than the shared pool, but
significantly less than the page cache. This parameter can be set if a performance hit at the end of a
checkpoint is noticeable and undesirable.

At the end of a checkpoint, the checkpointer process sends fsync system calls to files, blocks of
which were transferred to the page cache . This is done by calling the BufferSync function (flag). Only
checkpointer can call this function. Flags when calling the function CHECKPOINT_FLUSH_ALL,
CHECKPOINT_IS_ SHUTDOWN, CHECKPOINT_END_OF_RECOVERY, CHECKPOINT_IMMEDIATE remove
delays in transmitting fsync calls . Block identifiers (BufferTag) are passed to the checkpointer
process by server processes. The PendingWriteback and WritebackContext structures are used to
store identifiers . Sorting of blocks to determine page ranges is done in the IssuePendingWritebacks (..)
function. When displacing one block from the buffer cache, server processes call the
ScheduleBufferTagForWriteback (..) function and a check is inserted into it whether the server process
has exceeded the backend flush after value.

The range of values is from O to 256 blocks (2 MB).

\ dconfig * flush *

List of configuration parameters

Parameter | Value

________________________ PO

backend flush after | O
bgwriter flush after | 512kB
checkpoint flush after | 256kB

wal writer flush after | 1MB

The checkpoint flush after and bgwriter flush after parameters have the same purpose
(to reduce the performance drop at the end of a checkpoint), only for blocks sent for writing by
processes of the same name.

Practice

- Part 1. Launching a Huge Pages Instance

- Part 2. Changing the oom_score value

= Part 3. Unloading long lines with the pg dump
utility

= Part 4. Out of Memory

- Part 5. Enabling swapping

- Part 6. Page cache

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Practice

The main goal of all practices is to consolidate the material covered in memory.

Executing the commands described in the chapter helps to better remember the technical details that
were studied in the chapter. In practice, you will see what the oom kill process looks like . Watching an
instance crash causes emotions in responsible administrators, and emotions help to remember the
material studied. Example of using the Tantor DBMS configuration parameter
enable large allocations helps you remember where this setting might be useful .

In the practice, you will launch an instance with Huge Pages and see what commands you can run to
verify that they are being used by the instance.

You will trigger OOM kill . The practical task will allow you to understand how memory is accounted for
and displayed if processes use shared memory.

You will learn how to call OOM killer with a simple command :

select repeat('a', 100 0 000000) from generate series (1, 1 0 00);

You will see how to diagnose memory fragmentation linux and how to defragment it .

NLor

3-1

Processors

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 7

Simultaneous Multi-Threading (SMT)
and Hyper-Threading (HT)

= Hyper-Threading is the name of Intel's technology

= Simultaneous Multi - Threading is the name of AMD technology

= one physical processor core is defined by linux as two virtual (logical)
cores

= implements the concept of simultaneous multithreading

= check how many threads there are per core and whether there is SMT
support and whether SMT is active :

root@tantor :~# lscpu | grep Thread

Thread(s) per core: 1

root@tantor :~# cat /sys/devices/system/ cpu / smt /active
0

root@tantor :~# cat /sys/devices/system/ cpu / smt /control
not supported

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 78

Simultaneous Multi-Threading (SMT) and Hyper-Threading (HT)

Simultaneous multithreading (S imultaneous Multi - Threading (SMT) name of the technology . The
technology is implemented in AMD processors. In Intel processors , the technology is called Hyper-
Threading (HT). One physical core of the processor is defined by Linux as two " logical " (as an
antonym for the word " physical ") cores. The physical core can store the state of two execution
threads (threads), contains one set of registers and one interrupt controller (APIC) for each logical
core. The remaining resources of the physical core are shared by the logical cores. For the operating
system, this looks like two logical cores.

When executing a stream of commands from a logical core, a physical core will pause execution and
start executing commands from another core if:

a cache miss occurred while accessing the processor cache ;

a branch misprediction occurred,;

The result of the previous instruction is expected.

While the logical core is waiting for data to be received from memory into the processor cache, the
computing resources of the physical core will be used by the instruction flow of the second logical
core.

The CPU's computing power is usually not a bottleneck in a DBMS. Using multithreading can lead to a
high frequency of context switches and cache reloads . In this case, the CPU uses not only the instance
code, but also the Linux kernel code . It is better to test whether multithreading will improve the overall
performance of the instance.

Enabling and disabling multithreading is performed in BIOS.

pgbench test results with scale (-s) 300:
clients | tps (HT)| tps (no HT)
________ +__________+____________
4 | 517 | 520

8 | 1013 | 999

16 | 1938 | 1913

32 | 3574 | 3560

64 | 5873 | 5412

128 | 8351 | 7450

256 | 9426 | 7840

512 | 9357 | 7288

https://www.postgresqgl.org/message-id/53FD5D6C.40105%40catalyst.net.nz
https://elibsystem.ru/node/490

Process affinity (CPU affinity)

= increases the probability of data processes getting into
processor caches (TLB and others)
= can be ignored if:
> processor one
> the load on the processor cores is low (less than 80%)
= example of binding running process :

root@tantor :~# ps - ef | grep check

postgres 2181 2179 0 00:00:01 postgres: checkpointer
root@tantor :~# taskset -p 1 2181

pid 2181's current affinity mask: £

pid 2181's new affinity mask: 1

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 79

Process affinity (CPU affinity)

Processor affinity is an instruction to the operating system scheduler to restrict the execution of a
process to one or more processors. several processors. The idea is to increase the probability of
getting data from processes into various hardware caches , such as TLB . A tied process will not load
its data into the caches of other processors.

The process itself can programmatically manage the binding. PostgreSQL relies on the operating
system to access hardware resources, and the PostgreSQL developers did not implement binding.

To bind processes to a processor, you can use the taskset utility .

If there is only one processor, binding does not provide any advantages, since the processor caches are
shared by all cores of one processor . If there are several processors and instances, then binding the
processes of different instances to different processors can increase performance if the load on the
processor cores is high (more than 80-90%). If there is no load on the processor cores, then the cores
are not a bottleneck and processes rarely migrate between cores.

Example of viewing which core (psr) a process is running on:

root@tantor :~# ps - elLo psr ,pid,cmd --headers | grep checkpointer

3 2181 postgres: 15/main: checkpointer

1 126674 postgres: checkpointer

Example of binding running process:

root@tantor :~# taskset - p -c 1 2181

pid 2181's current affinity mask: £

pid 2181's new affinity mask: 1

Example output current binding running process:

root@tantor :~# taskset -p 2181

pid 2181's current affinity mask: 1

https://www.postgresqgl.org/message-id/4BOADE3F.2080703%40meteorsolutions.com

Viewing the list of processes using the ps
utility

= ps command line utility gives a list of running processes

= Using pipes you can format the output of the utility

= An example of processes in the output, including
the first row of the header describing the value in the
columns:

ps -A -o pid,psr,cmd |

PID PSR CMD

1 2 / sbin / init splash

2 1 [kthreadd]

3 0 [pool workqueue release]

= example output of processes named postgres and their
sorting by column pss in descending order :

p.s. -C postgres -o pcpu,vsz,rss,pss,rops,wops,cmd --sort - pss | head -4
$CPU VSZ RSS PSS ROPS WOPS CMD

0.0 231628 18416 14263 5 3069 postgres : checkpointer

0.0 233712 16172 9491 87 26 postgres : postgres postgres [local] idle

0.0 231516 6768 4301 34 98 postgres : walwriter

Educational Cot "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 80

Viewing the list of processes using the ps utility

ps command line utility gives a list of running processes and / or threads. The utility produces a static
report and after it is issued, it terminates its work, unlike interactive utilities top, htop , atop . The
ps utility collects data from the / proc directory , which contains information about all processes, and
presents it in a convenient form.

Using pipes you can format the output of the utility. An example of the first 4 processes in the output,
including the first line of the header describing the value in the columns:

pPs -A -o pid,psr,cmd | head - 4

PID PSR CMD

1 2 / sbin / init splash

2 1 [kthreadd]

3 0 [pool workqueue release]

Example of outputting a list of processes whose names contain the letter combination postgres and
limiting the output to the first two lines:

ps -A -o pid,psr,cmd | grep postgres | head - 2

1458 3 / usr /lib/ postgresqgl /15/bin/ postgres -D / var /lib/ postgresgl /15/main

-c config file =/etc/ postgresqgl /15/main/ postgresqgl.conf

1696 3 postgres : 15/main: logger

An example of the output of the last 8 processes, in the command name (parameter cmd) there is a
combination of letters postgres :

ps -o pid,psr,cmd -C postgres | tail -8

20406 3 postgres : checkpointer

20407 1 postgres : background writer

20409 3 postgres : walwriter

20410 2 postgres : autovacuum launcher

20411 1 postgres : autoprewarm leader

20412 2 postgres : pg wait sampling collector
20413 2 postgres : logical replication launcher

65139 3 postgres : postgres postgres [local] idle
Parameter -C SpeC|f|es the name of the command that runs the process.

Example of using the -0 parameter to list the columns you want to see in the utility output:

PsS —e - o user,pcpu,vsz,rss,pss,cls,nlwp,psr,rops,wops,ppid,pid,tid,s,cmd - -
sort - wops

This is also an example of output sorted by the wops column. in descending order

Description of columns:

USER is the name of the user with whose rights the process is running.

% CPU - CPU core load in %

VSZ - virtual memory in KB

RSS - resident (located in physical memory, not swapped out) memory size in KB
PSS - proportional memory size in KB

CLS - Process Scheduler Policy

NLWP number of process threads

PSR - the number of the processor core (cpu) on which the process or thread is running
ROPS - Input / Output Operations Ratio

WOPS - number of input / output operations

RBYTES - number of bytes read

WBYTES - number of bytes written

PPID - PID of the parent process

PID - PID of the process itself

TID - PID of the thread (LWP)

S - process status

CMD - the command that launched the process with parameters

Not all column names that the ps utility can output are listed.

Recording and viewing metrics with the atop

- EM%XQ processes and the current load It is convenient to use the
command line utility top

= top utility that it is usually installed by default

= atop utility allows you to record operating system performance indicators
into a binary file and then visualize the collected indicators:

T 0P 5100327 o
root@tantor :~# apt install atop -y 5 | e Fislpi 228 | Prslpu o7 pomie 9 |
root@tantor :~# dpkg -S / usr /bin/atop ~A Ziin Rl Rz gl R I
atop: / usr /bin/atop ok | POt 1.oh | e sarn | cabhe IO | Glbty O | burt e | Si 10420 | pates 110 |
root@tantor :~# atop -w / atop.record 1 15 = I rusnode a.c;g free o.u | Smer a3y I shrss o.uul shswo 0.0M | tcpsk 0,00 I udpsk :.(?'-U?.kl
root@tantor :~# atop -r / atop.record 3L | Coliose 70 | mescore OF | senfull 0% | Coseme 0% | lofoll O | o eram | me o 0r0r0 |

ISK | sda | busy 8% | read 0| write 63 | MBris 0.0 | MBw/s 0.9 | avio 1.04 »s |

CPU CND
1 24% sysLog-ng

[B - - 45
5 0.00s 2 08 828,06 -- - 1R 0 16% systemd-journa
5 0.00s o8 o8 08 12,06 -~ - 1R 1 10% atop
35 0.00s o8 o8 08 364,06 -~ - R
45 0.00s o8 o8 o8 o8 10R
5 0.00s 08 08 o8 o8 15
s 0.00s o8 08 og o8 1R
s 0.00s o8 o8 o8 iz &S
s 0.00s o8 o8 iz ez 45
s 0.00s 08 o8 o8 ez 3
0.005 o8 o8 o o 3
0.025 0.00s o8 o8 o o 4
0.00s o8 o8 o 0B -- - 1

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Recording and viewing metrics with the atop utility

For monitoring processes and the current load It is convenient to use the command line utility top .
The advantage of the top utility is that it is usually installed by default . The top utility included in the
procps package

root@tantor :~# dpkg -S / usr /bin/top

procps : / usr /bin/top

On hosts in production use, installing additional software is usually difficult. The probability of
installing simple and standard utilities is higher. Utility atop is available in the extended repository
Astralinux .

atop utility is that it allows you to write operating system performance indicators to a binary file and
then visualize the collected indicators. You can visualize the collected metrics on another host.

To record, use the command:

atop -w / path to file interval recording duration

The interval (default 10 seconds) and recording duration (default infinite) are specified in seconds.

To play, use the command:

atop -r / path_to_ file

When playing, the keyboard key ' t ' switches to displaying the next time interval, the key in
uppercase ' T ' to go back to the previous interval. The ' b ' key to go to the time, which will be
prompted to enter in the format [YYYYMMDD] hhmm . The ' r ' key to return to the beginning of the file.

The second advantage of the atop utility is that metrics in binary files can be visualized in Grafana :

https://github.com/rchakode/atop-graphite-grafana-monitoring

the top and atop utilities, the htop utility can be used . Advantages of the htop utility V color
pseudographics and saved settings.

https://wiki.astralinux.ru/tandocs/instruktsiya-dlya-podgotovki-k-nagruzochnomu-testirovaniyu-
302054346.html

Switching execution context

= voluntary context switching:
> the process cannot execute its code because it is waiting for an 1/0O
operation to be performed, or for a lock to be acquired
= involuntary context switching:
> the process exceeds time (timeslice) allocated to it by the
scheduler
> in accordance with the policy established for the process the
scheduler has the right to suspend the execution of a process
(displace the process from the processor core)
= a persistently high number of involuntary context switches
indicates that there is too much parallelism for the number of
processor cores

root@tantor :~# grep ctxt /proc/212233/status
voluntary ctxt switches : 0
nonvoluntary ctxt switches : 62728

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 83

Switching execution context

There are usually fewer processor cores than processes. A voluntary context switch (VCX) occurs
when a process makes a system call (disk or network 1/0, waiting for a lock) to the kernel code (sys)
and waits for a result, and until the result is received, it cannot perform its code (user) . An involuntary
context switch (ICX) occurs when the scheduler suspends execution of a process's code because the
process’s code exceeds the time slice the scheduler has allocated to the process or a higher-priority
process has arrived. ICX number should be ten times less than VCX . The opposite indicates that the
number of active processes (the degree of parallelization of some task: the pool of sessions with the
database, the number of workers) is too large. VCX and ICX You can see it in the statistics of a specific
process :

root@tantor :~# grep ctxt /proc/212233/status

voluntary ctxt switches : O

nonvoluntary ctxt switches : 62728

or perf stat - p PID . System-wide perf stat - a sleep 1 .

perf does not output ICX , which makes the utility useless. Other utilities (pidstat , vmstat)
average values and indicators (cs , nvcswch / s) and will be misleading. For example, a process can be
preempted 100 times per second on a core there might be 500 switches per second, a process on that
core might have 10 switches per second, and in the operating system the average number of switches
per process is 0.2 per second. The time is determined by the scheduler policy, but not lower than
kernel.sched rr timeslice ms , by default 100 milliseconds, (1/10 seconds, zero means the
default value) the value of which can be changed. By default, the SCHED OTHER policy is used. -
Completely Fair Scheduler (CFS) up to version 6.6 of the Linux kernel , after Earliest Eligible Virtual
Deadline First (EEVDF). Time (timeslice) is floating .

The disadvantage of CFS is that under load, CFS introduces a delay before the task (process that has
become active) starts executing and this delay is added to the response time , reducing the
responsiveness of the process . EEVDF eliminates this problem.

You can view the kernel version using the command:

root@tantor :~# cat /proc/version
Linux version 6.6 .28-1-generic

https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/sched_policy prio/start

Operating system scheduler

= By default, CFS uses the SCHED OTHER policy with the algorithm:
> CFS - up to linux kernel version 6.6
> EEVDF - replaces CFS since Linux kernel version 6.6 , eliminates
delay at the start of task execution
= minimum time a process can run before being evicted: not less than
kernel.sched rr timeslice ms , defaultis 1/10 second, value can
be changed
= policies can take into account process priority or nice or ignore them
= policies play a role when processors are fully loaded
= The policy can be changed for each process:

root@tantor :~# chrt -r -p 10 96878

root@tantor :~# chrt -p 96878

pid 96878's current scheduling policy: SCHED RR
pid 96878's current scheduling priority: 10

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 84

Operating system scheduler

The SCHED_OTHER policy (and its derivatives SCHED_BATCH, SCHED_IDLE) are not real-time
policies. Real-time policies (for interactive tasks where responsiveness is important - to receive
timeslices with some frequency) include: SCHED_FIFO - is preempted only by processes with higher
priority or the SCHED_DEADLINE policy, which leads to the process occupying the core for a long time;
SCED_ RR (Round Robin Scheduler) - the time is the same and equal to
kernel.sched rr timeslice ms . Processes with SCHED_DEADLINE can preempt processes with
SCHED_FIFO and SCHED_RR, that is, they have the highest priority.

The scheduler policy can be changed for a process. Current policy:

root@tantor :~# chrt -p 96878

pid 96878's current scheduling policy: SCHED OTHER

pid 96878's current scheduling priority: O

Install new:

root@tantor :~# chrt - r -p 10 96878

root@tantor :~# chrt -p 96878

pid 96878's current scheduling policy: SCHED RR

pid 96878's current scheduling priority: 10

root@tantor :~# chrt - £ -p 10 96878

root@tantor :~# chrt -p 96878

pid 96878's current scheduling policy: SCHED FIFO

pid 96878's current scheduling priority: 10

Set the process with pid=96878 to a guaranteed 5 milliseconds execution time with a period of 15
milliseconds and a deadline of 10 ms:

root@tantor :~# chrt - d -- sched -runtime 5000000 -- sched -deadline 10000000 -
- sched -period 15000000 -p O 96878

root@tantor :~# chrt -p 96878

pid 96878's current scheduling policy: SCHED DEADLINE

pid 96878's current scheduling priority: O

pid 96878's current runtime/deadline/period parameters:

5000000/10000000/15000000

CPU usage by application code and
kernel (USER/SYS ratio) .

50 %
= the User CPU time/System CPU time ratio

should be around 60/40

- if User is larger it means inefficient application o —
Cade XK
= if System is bigger - linux is experiencing B CPUidle time
roblems B CPU user time
P B CPU system time

a.8 a.a 8.8 wa

H.H 94,8 H.H

TH2.9 S9H.H use
0.8 B.8

PID USER PR HI VIRT RES
11200 postgres 28 A 28680 70 6508 R 168.8 h.2 1 P32 pu . ackup

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 85

CPU usage by application code and kernel (USER/SYS ratio)

USER/SYS CPU Time metric shows the proportion of processor time used by application code and
kernel code.

For quick monitoring you can use the top command .

Values:

us - User CPU time , the processor time spent by the application process code that was not niced .

sy - System CPU time , CPU time spent by linux kernel code .

ni - CPU time spent by the application process code that is niced .

nice property taken into account by some types of schedulers.

When the application and all processes are working normally, the total proportion is (us+ny)/ sy
should be approximately 60/40 . For example: us=30, sy =20, ni =0 .

If the proportion is strongly (80 /20) shifted towards us , it means that the application code is
inefficient. If it is shifted towards sy This means that the operating system is experiencing problems.

Example of a problem (error) in the application code (pg_basebackup utility code) 16 versions):

postgres@tantor :~$ time pg basebackup -c fast -D $HOME/backup/l -P -r 10M
51752/51752 kB (100%), 1/1 tablespace

real Om7.647s

user 0m4.991s

sys 0m0.091s

When using throttling (slowing down the backup), one of the processor cores is loaded at 100% and
us/ sy =~100/1. The code implementing throttling has an error. The mpstat utility does not
allow diagnosing the problem:

root@tantor :~# mpstat -n

Linux 6.6.28-1-generic (tantor) x86 64 (4 CPU)
NODE % usr % nice $sys % lowait %$soft %idle
all 2.27 0.03 0.23 0.11 0.29 97.08

gives % idle=97.08% and everything looks good - there is no load . If you calculate the USER/SYS
ratio in the mpstat utility (2.27+0.03%)/ 0.23 % which is equal to 10/1 (real ~ 100/1), you can see
that 10/1 is far from the proportion 60/40 .

Note: A bug in the pg basebackup code that caused the CPU core to load at 100% when throttling
was enabled was fixed in PostgreSQL version 17.

Time source

are also used by the Linux kernel and applications for obtaining timestamps
during boot linux checks available time sources and selects one to use
fastest source: Time Stamp Counter (TSC)

ACPI Power Management Timer (ACPIl_PM) is several times slower
Available sources:

1 cat /sys/devices/system/ clocksource /clocksource0O/ available clocksource
tsc hpet acpi pm

{ cat /sys/devices/system/ clocksource /clocksource0O/ current clocksource S
acpi pm

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 86

Time source

The clock source is used by the Linux kernel. and programs for obtaining timestamps. For example,
linux can mark each network packet with a timestamp. Also marks are used to ensure that audio and
video playback is smooth and not floating. Time sources can be accessed quite frequently. The detail (
frequency, fine grain) of time stamps, real accuracy (drift, jitter), absence of desynchronization
between processor cores, absence of issuing stamps to different processes in reverse order, i.e. not
corresponding to the course of real time are important. This occurs due to low-level out-of-order exe
optimizations with ution . Using reverse order for timestamps can lead to poorly diagnosed errors in the
operation of programs , especially third-party " cluster solutions " .

During boot, linux checks for available time sources and selects one to use. Preferred Time Stamp
Counter (TSC) . It uses the RDTSC processor instruction to obtain a stamp , which causes a 64-bit
integer quantum (tick, jiffy) of time to appear in the processor register. The number is reset when the
power is reset, sleep. You can view the parameters of the time counter with the command cat /proc/
cpuinfo . The command can return the value rdtsp (the processor has a register that outputs the
TSC time) or constant tsc (the processor normalizes the ticks so that they do not depend on the
processor frequency but correspond to real time). The next preferred source is integrated into the
chipset : High Precision Event Timer (HPET) . The technology was created by Intel and
Microsoft. One of the problems with the technology is that the access time to the counter levels out its
detail. HPET is banned for use with Intel Coffee Lake processors starting with the Linux kernel version
5.4 due to inaccuracy . HPET is used for TSC calibration. If HPET is disabled in BIOS or prohibited in
Linux , then another method (PMTIMER) is used for calibration . Next source: ACPI Power
Management Timer (ACPI_PM , aka PMTIMER). The following Programmable Interval Timer (PIT) and
Real Time Clock (RTC), they are less preferred.

List of sources that linux considered it possible to use :

cat /sys/devices/system/ clocksource /clocksource0O/ available clocksource

tsc hpet acpi pm

Source used:

cat /sys/devices/system/ clocksource /clocksource0O/ current clocksource

acpli pm

Comparison of time sources

= to check the speed of the time source you can use a program that requests
the time many times

Fower Management
for acpi_pm : For tsc: [
time ./ clock_timing time ./ clock_timing
real Om38.889s real Oml3,967s Fouar On'ho King (Enabled]
user Oml5.760s user Oml3,938s HERUmE 1U10 Lan LoaEanlec
sys O0m23.126s sys Om0O,008s - mm ' 55) -

HPET Support [Enabled]

- speed difference between acpi_pm and tsc significant : 2.8 times

= real :the time from program invocation to termination. real includes user
and sys and may be greater than their sum if the program was preempted
by the scheduler (involuntary context switches).

= user :time of execution of program code.

= sys : Linux kernel code execution time (working with hardware, memory,
files, threads, network)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 87

Comparison of time sources
You can check the speed of the time source by creating a file clock timing.c :

#include < time.h >
int main ()
{
int rc ;
long i ;
struct timespec ts ;
for(i =0; i < 10000000 ; i ++) rc = clock gettime (CLOCK MONOTONIC , & ts);
return O;

}

compile the file with the command:

gcc clock _timing.c -o clock_timing - 1lrt

and check what load reading the time 10000000 times gives.
For acpi pm :

time ./ clock_timing
real Om38.889s

user O0ml5.760s

sys 0m23.126s

For tsc

time ./ clock_timing
real O0ml3,967s

user 0ml3, 938s

sys Om0,008s

The difference is 2.8 times .

If the BIOS has an option to enable / disable HPET , then HPET should be disabled, as it usually reduces
performance.

You can replace CLOCK_MONOTONIC on CLOCK MONOTONIC COARSE and the speed will increase 50
times.

real :time from program call to completion. real includes user plus sys and may be greater than
their sum if the program was preempted by the scheduler (involuntary context switches).

user :time of execution of program code.

sys :execution time of the Linux kernel code (working with hardware, memory, files, threads,
network).

Comparing Time Sources in PostgreSQL

= the time source is actively used when enabling configuration options
track wal io timing , track io timing , track commit timestamp

= An example of the effect of choosing a time source on the execution time of the
explain analyze command

e - : v fdapieass A s o —etooi

postgres=# explain analyze select count(pk) from t;

QUERY PLAN

Aggregate (cost=1791.00..1791.01 rows=1 width=8) (actual time=836.212..836.228 rows=1 loops=1l)

-> Seq Scan on t (cost=0.00..1541.00 rows=100000 width=8) (actual time=0.019..408.416 rows=100000 loops=>
Planning Time: 0.056 ms

Execution Time: 836.334 ms

(4 rows)

postgres=# \! sudo sh -c 'echo tsc > /sys/devices/system/ clocksource /clocksource0/ current_ clocksource '
postgres=# explain analyze select count(pk) from t;

QUERY PLAN

Aggregate (cost=1791.00..1791.01 rows=1 width=8) (actual time=308.180..308.187 rows=1 loops=1)

-> Seq Scan on t (cost=0.00..1541.00 rows=100000 width=8) (actual time=0.022..153.991 rows=100000 loops=>
Planning Time: 0.375 ms

Execution Time: 308.373 ms

o
iy

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 88

Comparing Time Sources in PostgreSQL

source can be actively used by instance processes. An example is the explain analyze command. Time
is actively read when the track wal io timing , track io timing ,

track commit timestamp configuration parameters are enabled

An example of how the time source affects the explain analyze command:

postgres=# drop table if exists t;

create table t(pk bigserial, cl text default ' aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ');

insert into t select *, 'a' from generate_ series (1, 100000);

DROP TABLE

CREATE TABLE

INSERT 0 100000

ALTER TABLE

postgres=# \! sudo sh -c 'echo acpi_pm > /sys/devices/system/ clocksource /clocksource0/ current_clocksource '
postgres=# explain analyze select count(pk) from t;

QUERY PLAN

Aggregate (cost=1791.00..1791.01 rows=1 width=8) (actual time=836.212..836.228 rows=1 loops=1)

-> Seq Scan on t (cost=0.00..1541.00 rows=100000 width=8) (actual time=0.019..408.416 rows=100000
Planning Time: 0.056 ms

Execution Time: 836.334 ms

(4 rows)

postgres=# \! sudo sh -c 'echo tsc > /sys/devices/system/ clocksource /clocksource0/ current clocksource '
postgres=# explain analyze select count(pk) from t;

QUERY PLAN

Aggregate (cost=1791.00..1791.01 rows=1 width=8) (actual time=308.180..308.187 rows=1 loops=1)

-> Seq Scan on t (cost=0.00..1541.00 rows=100000 width=8) (actual time=0.022..153.991 rows=100000
Planning Time: 0.375 ms

Execution Time: 308.373 ms

(4 rows)

In addition to the WAL synchronization method testing utility pg test fsync , PostgreSQL also
comes with a command-line utility for testing the time source speed pg_test timing
https://docs.tantorlabs.ru/tdb/ru/16_4/se/ pgtesttiming .html

Replacing the time source

when booting linux the time source acpi_pm can be selected , which is
slower than tsc

to change source to tsc need to be added to file /etc/default/grub
after quiet splash options:

clocksource = tsc nohpet processor.max cstate =1 intel idle.max cstate =0

< and run the update-grub command

= after reboot check that tsc is used And max cstate =0

cat /sys/devices/system/ clocksource /clocksource0O/ current_ clocksource
tsc

cat /sys/module/ intel idle /parameters/ max cstate

0

= You can check the speed and stability of the time source using the
command line utility pg test timing
> the utility also gives the distribution of delays in the speed of time transfer

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 89

Replacing the time source

When booting linux the acpi_pm time source may be randomly selected , which is slower than tsc .
This may be due to hardware errors (https://bugzilla.kernel.org/show_bug.cgi?id=203183).

HPET is not selectable, but is used for TSC calibration in recent kernels . If HPET cannot be used, PIT
or PMTIMER is used for calibration.

To change the source to tsc need to add to file /etc/default/grub after quiet splash

parameters:

nohpet processor.max cstate =1 intel idle.max cstate =0

or

clocksource = tsc nohpet processor.max cstate =1 intel idle.max cstate =0

and run the update-grub command , which will update the /boot/grub/grub.cfg file

In addition to an incorrectly selected time source due to running in a virtual machine, hardware errors
can also occur. For example, the TSC clock can stop or become desynchronized when the processor
goes into power saving states (sleep) or when the processor frequency changes. This can look like
this hanging linux when loading, when stopping. In such cases, use workaround , disabling " energy
saving " parameters in /grub.cfg :

processor.max cstate =1 intel idle.max cstate =0 idle=poll

Check which CSTATEs are used:

cat /sys/module/ intel idle /parameters/ max cstate

0

Using idle=poll may result in higher heat output on processors if they are not constantly under load .

If in the list:

cat /sys/devices/system/ clocksource /clocksource(O/ available clocksource

tsc hpet acpi pm

there is a source, then you can change the clock source without rebooting using the command:

echo tsc > /sys/devices/system/ clocksource /clocksourceO/ current clocksource

You can check the speed and stability of the time source using the command line utility
pg _test timing

https://linuxreviews.org/Linux_Kernel_Disables_Coffee_Lakes HPET_On_The_Grounds_That_It_Is %22
Unreliable%22

You can also check with the command line utility pg test timing
The difference will be similar.

acpi_pm :

Testing timing overhead for 3 seconds.
Per loop time including overhead: 3998.44 ns
Histogram of timing durations:

us % of total count

0.00147 11

0.00200 15

21.37522 160377

78.16336 586455

16 0.24870 1866

32 0.08970 673

64 0.09663 725

128 0.01839 138

tsc :

Testing timing overhead for 3 seconds.
Per loop time including overhead: 1388.24 ns
Histogram of timing durations:

us % of total count

0.00801 173

63.83282 1379438

36,02110 778422

0.00139 30

16 0.07807 1687

32 0.04262 921

64 0.01328 287

128 0.00199 43

Linux builds may run different time sources on the same hardware.

Example of messages when tsc not selectable:

dmesg | grep tsc

tsc : Marking TSC unstable due to clocksource watchdog

TSC found unstable after boot , most likely due to broken BIOS. Use ' tsc =unstable'.
clocksource : Checking clocksource tsc synchronization from CPU 1 to CPUs 0.3.

clocksource : Override clocksource tsc is unstable and not HRT
compatible - cannot switch while in HRT/NOHZ mode

Messages about instability may be related to hardware errors .
Example of messages after clocksource = tsc without nohpet
dmesg | grep tsc

tsc : Fast TSC calibration using PIT

tsc : Detected 3600.150 MHz processor

Kernel command line: BOOT IMAGE=/boot/vmlinuz-6.6.28-1-generic root=UUID=acala090-eba2-49ba-a8fc-bal2e%e2bf26 ro
quiet splash clocksource = tsc processor.max cstate =1 intel idle.max cstate =0 parsec.max ilev =0 parsec.mac=0
pcie aspm =performance

clocksource : tsc -early: mask: Oxffffffffffffff max cycles : 0x33e4e0£fd970, max idle ns : 440795362981 ns

clocksource : Switched to clocksource tsc -early

tsc : Refined TSC clocksource calibration: 3600.003 MHz

clocksource : tsc : mask: Oxffffffffffffff max cycles : 0x33e4564530a, max idle ns : 440795343825 ns

clocksource : Switched to clocksource tsc

clocksource : wd- tsc -wd read-back delay of 427149ns, clock-skew test skipped!

Example of messages after nohpet

tsc : Fast TSC calibration failed

tsc : Unable to calibrate against PIT

tsc : using PMTIMER reference calibration

tsc : Detected 3599.954 MHz processor

Kernel command line: BOOT IMAGE=/boot/vmlinuz-6.6.28-1-generic root=UUID=acala090-eba2-49ba-a8fc-bal2e%e2bf26 ro
quiet splash nohpet processor.max cstate =1 intel idle.max cstate =0 parsec.max_ilev =0 parsec.mac=0 pcie_aspm
=performance

clocksource : tsc -early: mask: Oxffffffffffffff max cycles : 0x33e42840770, max_idle ns : 440795330420 ns

clocksource : Switched to clocksource tsc -early

tsc : Refined TSC clocksource calibration: 3600.002 MHz

clocksource : tsc : mask: Oxffffffffffffff max cycles : 0x33e4559ced4d, max idle ns : 440795364889 ns

clocksource : Switched to clocksource tsc

clocksource : wd- tsc -wd read-back delay of 159517ns, clock-skew test skipped!

@ N EA

@ DN A

3-2
Net

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 91

Basic network parameters

= Main parameters:

> bandwidth

> network latency

> presence and frequency of network failures

throughput is usually not a bottleneck

= instance uses:

> unix sockets for local connections

> TCP/IP for connections via network interfaces

network latency is important when synchronously committing
transactions with confirmation by replica

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 92

Basic network parameters

The main network parameters are: bandwidth , network latency , and network failure rate (including
packet loss). Postgresqgl uses unix sockets for local connections and TCP/IP over network interfaces.
The network is not usually a bottleneck for the DBMS. The amount of data transferred to clients during
normal operation is not very large. The network can be a bottleneck when using synchronous
transaction commit, where network latency is important. Typical network latency is 8-25 microseconds.
Using RDMA (Remote Direct Memory Access) theoretically allows to reduce the latency to 1-2
microseconds, and also increase the actual throughput by reducing the load on the central processors.
This is achieved by the remote host's network card controller writing to the address space of the
memory of an arbitrary process on the remote host, which unloads the central processors from
operations related to data transfer via network interfaces (marketing term zero-copy) . There are
RDMA over Converged Ethernet (RoCE) standards in Ethernet and built-in functionality in InfiniBand
solutions . In 2019, NVIDIA acquired the only manufacturer of Infiniband equipment Mellanox company .
In Oracle Exadata X8M and newer 100 gigabit Ethernet is used (for example, Cisco Nexus 9336C-FX2
switches) .

RDMA technology was used in the fork of Postgres Pro Enterprise 10 and 11 versions (the parameter
listen rdma addresses), in newer versions of the fork the technology is not mentioned and the
parameter is missing. When using up to 3 synchronous replicas and Mellanox equipment the effect was
not too noticeable.

Under high load, practical performance is determined by the balance of the hardware used, not by the
use of any technology. RDMA can be used in the Tantor hardware and software complex xData for
backup speeds of 2.5 gigabytes per second (10 terabytes per hour).

https://ibs.ru/media/superkompyuternoe-mezhsoedinenie-v-mashinakh-baz-dannykh/

Congestion and slow start algorithms

* net.ipvéd.tcp available congestion control defines the
algorithm for selecting the data transfer rate separately for each
network connection (socket)

* net.ipv4.tcp slow start after idle=0 disables slow start

- 3 packets are transmitted without confirmation
package size

1095-2190 bytes

220: Congestion Control Congestion Avoidance

180 Packet Loss

.

1404

v BaFDVSKa A Bblrpy3Ka 1 Exponential Growth——
Makc: 64,6 M6/c Makc: 39,1 M6/c = ']
Cp.: 52,0 M6/c Cp.: 27,6 M6/c 60: '\Multipiicative Decrease

204

12 3 4 5 6 7 8 9 10
Round Trips

Congestion window size (segments)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 93

Algorithms with ongestion and slow start

In low latency networks, when the transmission channel is not used at 100%, there is no packet loss,
and small amounts of data are transmitted (3 packets of 1095 to 2190 bytes). (according to the formula
from RFC5681) network parameters do not affect performance. If load balancers are used on
intermediate hosts, then network latency and differences in network card characteristics may play a
role. If there is one network interface and it is used for backup at maximum speed, then connections of
server processes with clients via the same network interface may experience delays in data transfer.
Why does this happen ? Let's imagine that a process (server or wal_sender) must pass through the
socket TCP field (data) of 500 MB. It will transmit not by byte and wait for confirmation, the process will
indicate " transmit " with a system call and a reference to the memory area with 500 MB. Then, let's say
the operating system has a tcp buffer 10 MB in size and it transmits all 10 MB in a stream to the
transmission medium, and the operating system of the receiving process has a 1 MB buffer and a slow
processor. 9 MB will not be accepted (ignored) because there is nowhere to receive them, and the
transmission medium was occupied with all 10 MB. P o tcp 9MB will be retransmitted sometime when it
is found that they were not received. That is, there may be situations when data is " dropped " because
the other side or the intermediate process (balancer) cannot accumulate data coming from the
transmission medium. On the other hand, underloading of the channel is also bad, underloading
appears if the network delay is relatively high. At the transmission medium level (channel and other
levels), MTU and other parameters are set, jumbo frames are used. We consider the TCP level , since
this protocol uses PostgreSQL .

The congestion window value is reset after idle time. This may impact the performance of long-lived
TCP connections that may be idle due to client inactivity. It is better to disable slow start on the server to
improve the performance of long-lived connections :

net.ipvéd.tcp slow start after idle = 0 .

tcp level the algorithm is responsible for selecting the initial volume of data to be transferred

net.ipvé4.tcp congestion control = cubic

net.core.default gdisc = pfifo fast

https://habr.com/ru/companies/yandex/articles/533530/

https://habr.com/ru/companies/webo/articles/327050/

BBR (Bottleneck Bandwidth and Round Trip Time)
Algorithm

= by default the CUBIC algorithm is used

= CUBIC is sensitive to packet loss, BBR is not

= BBR, when fully loaded on the transmission medium,
consumes all available bandwidth and displaces other
sockets that use c ubic and other algorithms

= inclusion:
> sysctl -w net.ipv4.tcp congestion control= bbr
> sysctl -w net.core.default qdisc = fq
> net.ipv4.tcp timestamps = 1

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 94

BBR (Bottleneck) Algorithm Bandwidth and Round Trip Time)

tcp level the algorithm is responsible for selecting the initial volume of data to be transferred

BBR support is available since the Linux kernel 4.9 . The fact that it is not issued does not mean that
BBR is not supported. By default in Linux cubic is used since kernel 2.6.19 (this algorithm is also used
in Windows 10) .

BBR (Bottleneck Bandwidth and Round Trip Time , channel width and round trip packet transmission
time metrics) is one of the algorithms that determines how packets go into the network. Developed by
Google in 2016. The algorithm is configured by two related parameters. For BBR , you need to set
net.core.default gdisc = fq , otherwise, when the network is fully loaded, what can sockets with
BBR do, other sockets will not be able to transmit data. Why does this happen ? The BBR algorithm is
not based on packet loss, but on channel width and network latency . The algorithm is not sensitive to
packet loss for any reason.

Other algorithms set the volume of transmitted data by measuring data loss, which is undesirable and
leads to their retransmission. Loss begins, volumes are reduced.

These algorithms are very sensitive to packet loss for any reason.

Sockets using algorithms that rely on packet loss will fail to transmit packets when the channel is fully
utilized. Sockets with BBR do not rely on data loss. BBR consumes all available bandwidth and displaces
other sockets that use c ubic (RFC 8312) and other algorithms.

What controls the packet sending speed? The pacing technique , which is implemented in the FQ
scheduler. The scheduler setting and do not depend on the value of net.core.default gdisc

Which side do the parameters apply to ? The side that initiates the transmission. The receiving side
can use any settings and not support BBR.

Therefore, test measurements may show that in one direction the data transfer graph increases and
the speed is high, and in the opposite direction there is a surge, then a dip and settles at a low speed. In
this case, you need to set the values on the client or unload the transmission channels from the client to
the server.

Monitoring:
ss -tin
ss --options --extended --memory --processes --info

https://djangocas.dev/blog/huge-improve-network-performance-by-change-tcp-congestion-control-
to-bbr/

Network connection parameters

® tcp user timeout how long transmitted data can remain
unacknowledged before a decision is made to forcibly close the TCP
connection

= client connection check interval (in milliseconds) interval
between checks during command execution by polling the state of a
socket on which no data is being transmitted

root@tantor :~# sysctl -a | grep keepalive
net.ipvé4.tcp keepalive intvl = 75 -> 20
net.ipvé.tcp keepalive probes = 9 -> 5
net.ipvé4.tcp keepalive time = 7200 -> 240

net.ipv4.tcp_slow_start after idle =1 -> 0
net.ipvéd.tcp retries2 = 15 - > 3
net.ipv4.tcp_timestamps =1 -> 0

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 95

Network connection parameters

Resilience of network connections, especially under load, helps avoid performance degradation
associated with retrying actions that failed due to a network failure.

The following parameters have default values of zero, which is the default interval for sockets in Linux
. The default values are conservative and can be reduced:

root@tantor:~# sysctl - a | grep keepalive

net.ipvéd.tcp keepalive intvl = 75 -> 20

net.ipvéd.tcp keepalive probes = 9 -> 5

net.ipvéd.tcp keepalive time = 7200 -> 240

tcp user timeout interval (in milliseconds) during which transmitted data may remain
unacknowledged before a decision is made to forcibly close the TCP connection. tcp user timeout
must be set in the range from (tcp keepalives idle + tcp_ keepalives interval * (
tcp keepalives count - 1)) tOo (tcp_keepalives idle + tcp keepalives interval *
tcp keepalives count) . Can be setto an upper bound .

tcp keepalives idle (in seconds) the period of no traffic, after which Linux sends a TCP packet to
keep the connection. tcp keepalives interval (in seconds) the interval for re-sending a
connection-keeping packet if the other side has not responded to the first packet.
tcp keepalives count the number of connection-keeping packets sent after which the connection
will be broken.

client connection check interval (in milliseconds) interval between checks during command
execution by polling the socket state when no data is being transmitted. Checking is disabled by
default. The socket may have been closed by the other side or by the operating system kernel code
due to the other side not responding to keepalive packets .

The values should not cause a false positive. There are also parameters
idle in transaction session timeout , idle session timeout , transaction timeout
, wal receiver timeout , wal sender timeout , butthey usually have larger values than the
socket parameters .

https://www.postgresqgl.org/message-
id/flat/160741519849.701.13355787096244067178%40wrigleys.postgresqgl.org

https://blog.cloudflare.com/when-tcp-sockets-refuse-to-die/

Energy saving parameters

= there is no need to enable it in
the operating system

= due to implementation errors, it
may reduce performance

= part of the settings in the

firmware

root@student :~# cat /sys/module/ pcie_aspm /parameters/policy
[default] performance powersave powersupersave

root@student :~# echo performance > /sys/module/ pcie_aspm
/parameters/policy

root@student :~# cat /sys/module/ pcie_aspm /parameters/policy
default [performance] powersave powersupersave

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 96

Energy saving parameters

There may be power saving settings in the BIOS . For example, Intel TurboBoost , HyperThread , C-
states, DDR Frequency. It is worth checking the values, as well as the virtualization parameters. On data
center equipment, power saving parameters may be enabled by default, since increased power
consumption leads to increased heating. Data centers pay attention to PM (power management) and
RM (resource scheduling) . Usually, the BIOS allows the operating system to manage power saving.
Usually, the operating system highlights several plans (policies), among them maximum performance,
maximum power saving. When choosing something other than " performance " (maximum
performance), the operating system refers to the firmware , which reduces power consumption. The
problem is that the power saving functionality has errors in implementation. For example, a peripheral
device may not exit power saving mode correctly. For example, high-speed (100 GbE) network cards
may start working at half the speed. Peripheral energy saving does not generate much heat and there is
no point in energy saving for a server with a DBMS. Manufacturers may explain implementation errors
as the fact that when using Active-State Power Management (ASPM) adds a delay when waking the
device from a low power level (
https://edc.intel.com/content/www/us/en/design/products/ethernet/config-guide-e810-dpdk/active-
state-power-management/) .

Equipment manufacturers may include functionality that increases performance, but since it leads to
overheating, it cannot work constantly and must be switched off after some time (TurboBoost). Such
functionality is unlikely to be included, since uneven speed of equipment operation can disrupt the logic
of the operating system and applications, if they have self-tuning, it is unlikely to take into account
sudden changes in equipment performance.

Optimal settings that guarantee the declared performance indicators are found in software and
hardware systems. For example, arbitrary changes in the contents of memory cells during frequent
reading of adjacent memory areas (" rowhammer ") can be found in chips from some manufacturers
and absent from others, regardless of the presence of ECC parity control (does not recognize changes
in three bits), which is indirectly (they select components for which there are few warranty claims)
taken into account by manufacturers of hardware systems.

Practice

- Part 1. Standard pgbench test

= Part 2. Binding processes to a processor core

= Part 3. Switching execution contexts

- Part 4. Monitoring CPU load

= Part 5. Collecting statistics into a file and viewing it with the atop
utility

= Part 6 . Linux Time Source

= Part 7. Network connections

= Part 8. Replacing the scheduling policy and checking the
scheduler operation

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 97

Practice

In practice, what was studied in the chapter is consolidated.

You will learn

bind processes to processor cores ;

diagnose context switches and see how linux utilities perf , pidstat which commands give out useless
data that is misleading and which commands give out real data ;

the EXPLAIN ANALYZE command several times.

You will change the parameters of the linux scheduler and you will see that the perf utility does not
give the number of forced context switches. Also see how to get real data on context switches.

NLor

4

Storage system

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 98

Disk subsystem

= synonyms: input/output (I/O), data storage system (DSS)
= the most loaded DBMS resource from the main resources:
> disk
> CPU
memory
> het
= instance can use direct | / O, in version 16 does not provide better fault
tolerance and performance
= Setting up the disk subsystem includes:
> choice of storage systems (eg SSD or HDD)
> 1/ o selection scheduler
= Configuring cluster and tablespace parameters
= creating mount points, selecting file systems, volume managers, mount
options
= |/O monitoring and related settings

\%

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 99

Disk subsystem

The disk subsystem (input-output, storage system) is the most loaded resource of the DBMS from the
main resources:

disk

CPU

memory

net.

The database cluster is stored in files in the PGDATA directory of the file system and other directories
that are symbolically linked in the PGDATA/ pg tblspc directory . By default, normal system calls
are used when working with files and the work is done through the page cache.

The instance can use direct I/O (directi/ o, O_DIRECT). Theoretically, such access has advantages,
but historically, | / O work was optimized for regular file access, not direct. Direct access in version 16
does not provide better fault tolerance and performance. When opening a file with O_DIRECT, the
operating system does not cache its contents, but also does not ensure that it is written, that is, it does
not send the ATA flush command to the disk controller and the write goes to the disk cache. To ensure
that the write is done, processes will still need to perform fsync , or disable write caching in the disk
firmware . Direct access is enabled by the debug _io direct parameter . By default, an empty
string (direct | / O is disabled). The value can be words separated by commas: data (direct access to
data files), wal (direct access to WAL files), wal init (direct access when creating WAL files).
Setting up the disk subsystem includes:
1.choice of storage systems (eg SSD or HDD)

2.i/o scheduler selection

3.Configuring cluster and tablespace parameters

4.PGDATA subdirectories , selecting file systems, volume managers for mount points, selecting mount
options

5.monitoring the load on input / output devices, adjusting parameters and redistributing mount points
across devices

6.Related settings: configuring cluster parameters to ensure fault-tolerant and efficient writing to WAL,
monitoring free space and configuring junk file cleaning to free up free space in a timely manner.

HDD, SSD, NVMe

- SSD (solid-state drive) - solid-state (on microcircuits) " disk "

= NVMe , (Non-Volatile Memory express, non-volatile memory) - an
interface for accessing SSDs connected via the PCle bus

= SATA (Serial Advanced Technology Attachment) is a transport protocol
that defines the interaction between the controller and storage devices.

= SAS (Serial Attached SCSI) - a set of SCSI commands over a physical
interface similar to SATA

= AHCI (Advanced Host Controller Interface) is a standard that describes
operations with SATA controllers.
> one gueue for each port with a depth of up to 32 commands
> hot swapping of devices is supported

= M.2 (NGFF, Next Generation Form Factor) is a common name for the form
factor and physical interface for SSDs, has 4 PCle lanes with a total
speed of 4 or 8 gigabytes per second

= SATA speed - 600 megabytes per second

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 100

HDD, SSD, NVMe

HDD (hard disk drive) - a hard disk, characterized by a delay in random access to data, acceptable
sequential speed, low cost per storage unit. Lifespan depends on operating time.

SSD (solid-state drive, solid-state device, i.e. without moving parts) - a data storage device on
microcircuits (NAND), the placement and reading of data is performed by the controller chip. More
expensive than HDD , equally fast random and sequential access speed. The service life depends on
the amount of recorded data. The recording speed depends on the volume of stored data.

NVMe (Non-Volatile Memory express) is an interface for accessing SSDs connected via the PCle bus .

PCle (Peripheral Component Interconnect Express) has high throughput and low latency. NVMe
devices They may have random access memory (DRAM) of about 1 GB in size, in which they cache the
data allocation table, they may not have it, or they may use the main memory of the host of about 32
MB (HMB, Host Memory Buffer) , using the direct memory access (DMA) capability of the PCle bus .

SATA (Serial Advanced Technology Attachment) is a transport protocol (a set of commands and the
sequence of their use) that defines the interaction between the controller and storage devices. SATA is
also the name of the technical specifications followed by cable and connector manufacturers.

SAS (Serial Attached SCSI) is a set of SCSI commands over a physical interface similar to SATA. The
advantages of SAS are the ability to connect a device simultaneously via several channels, and a cable
length of up to 10 meters instead of 1 meter.

AHCI (Advanced Host Controller Interface) is a standard developed by Intel that describes operations
with SATA controllers that serve storage devices such as HDD, SSD , DVD. Devices can support NCQ (a
proprietary command queue that allows the device to accept more than one command at a time and
independently determine which command from the queue will be executed first. In AHCI, each port
(interface with the device) can have one queue with a depth of up to 32 commands (in SAS devices up
to 256). The AHCI standard includes hot-plugging . This means that the operating system, when
working with SATA controllers that support physical connection/disconnection of devices, will be able
to process such events.

SATA speed is 600 megabytes per second. SAS has a maximum of 2400 MB, which is several times
lower than the speed of M.2 PCle 4x4 (version 4 lines 4) NVMe .

For comparison, USB (Universal Serial Bus) transfer speeds are:

3.0 (aka 3.1 Genl, aka 3.2 Genl) - 500 MB/ s

3.1 (aka 3.1 Gen2, aka 3.2 Gen2) - 1200MB/ s

3.2 (aka 3.2 Gen 2x2) - 2400MB/ s

USB4 - 40Gbps or 20Gbps , backward compatible with USB 3.2 and 2.0.

SATA interfaces can be used because the hardware is not very expensive.

SAS controllers can support connecting devices with a SATA interface, either directly connected using
the SATA protocol, through expansion cards using tunneling via the STP (SATA Tunneled Protocol).

M.2 (NGFF, Next Generation Form Factor) is a common name for the form factor and physical
interface for SSDs, WiFi adapters , Bluetooth 4G modems, and other devices. It is called so because it is
considered the second version of the outdated Mini connector. PCle , which also had up to 4 PCle lines
and one SATA. Devices with an M.2 connector can use any of the connector buses, so knowing that the
device has an M.2 connector is not enough. For example, a 4G modem can use some PCle lines or one
USB.

Devices with an M.2 connector may have cutouts (" Key "). Commonly used are:

B.Key PCle x2 (two lanes), SATA, USB, PMC, IUM, SSIC, 12C

M.Key PCle x4 or SATA

B/M Key PCle x2 or SATA.

Throughput of one PCle lane :

version 3.x in each direction - slightly less than 1 Gigabyte per second

PCle version 4 - 2GB/ s . When using 4 lines (" PCle 4x4™) - slightly less than 8GB/ s

SSDs of the M.2 form factor with SATA interface have a speed of no more than 600 MB/ s .

Manufacturers of boards for installing SSDs make an M.2 connector with an M key and two interfaces
to choose from: PCle or SATA. There are exceptions when the M.2 connector on the board is
connected only to the PCle bus or only to the SATA controller.

Intel Technology Optane (an alternative to NAND) was not developed. It was notable for the fact that in
addition to the PCle interface , it could use the DDR4 slot.

NVMe specification , which is useful for interpreting NVMe- related acronyms and metrics :

https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-
2024.08.05-Ratified.pdf

Link to specifications page:

https://nvmexpress.org/specifications/

Block devices

= atype of special file in Linux that provides an interface for accessing a
device (or a regular file)

= reading and writing occurs in blocks of equal size

- are located inthe / dev directory mounted on the dev tmpfs
virtual file system

» [/ dev contains files only for those devices that are currently
available (connected)

e devices are detected are specifiedin files in the
/lib/udev/rules.d directory

= list of block devices:

root@tantor :~# 1ls -1 /dev | grep br

b rw-rw ---- 1 root disk 7 , 0 date time loopO

b rw-rw -—--- 1 root disk 8 , 0 date time sda

b rw-rw ---- 1 root disk 8 , 1 date time sdal

b rw-rw ----+ 1 root cdrom 11 , 0 date time sr0

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 102

Block devices

Block device (block device) - a type of special file in Linux that provides an interface for accessing a
device (or aregular file). They are called block files because reading and writing occurs in blocks of
equal size.

Access is arbitrary, the block ordinal number is specified. Direct input/output can be used for access.

A block device file can reference a disk, a disk partition, or a volume.

File systems use block devices when accessing storage media.

Block devices are located inthe / dev directory mounted onthe devtmpfs virtual file

system :
root@tantor :~# mount | grep /dev
udev on /dev type devtmpfs (rw,nosuid,relatime,size =968888k,

nr inodes =242222,mode=755, inode64)

hugetlbfs on /dev/ hugepages type hugetlbfs (rw,relatime,pagesize =2M)

/ dev only contains files for devices that are currently available (connected). If a device is
disconnected, the file is removed from / dev .

The udev process is responsible for this , it receives events that are generated when the device is
initialized or removed. The files specified in the /lib/udev/rules.d directory The rules are
checked against the event properties and the matching rules are executed and can create device files,
run programs and command files to initialize and configure devices. For example, mount file systems
when a drive is connected.

List of block devices:

root@tantor :~# 1ls -1 /dev | grep br

b rw-rw ---- 1 root disk 7 , 0 date time loopO0

b rw-rw —-——— 1 root disk 8 , 0 date time sda

b rw-rw —-——— 1 root disk 8 , 1 date time sdal

b rw-rw ----+ 1 root cdrom 11 , 0 date time sr0

The first letter b stands for block device . Instead of the file size, two numbers are given: the type and
serial number (or operating mode) of the device.
There is also a directory / sys / dev / block with symbolic links to devices.

| / O Scheduler

= when using high-speed NVMe devices , there is no point in using any
scheduler, i.e. it is worth setting the scheduler to none

= NVMe memory controllers on PCle low-latency buses handle the flow
of parallel requests without putting a strain on CPUs and processor
caches , unlike scheduler code

= The purpose of schedulers is to queue requests from a large number of
processes, passing requests to the storage controller one after
another, so as not to overload the controller

= modern planners: none mg-deadline kyber bfqg

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 103

| / O Scheduler

The operating system scheduler was discussed earlier; it schedules the use of CPU resources and is
not related to the I/0O scheduler.

The 1/0 scheduler determines the order in which block I/O operations are submitted to storage
devices. The purpose of the | / O scheduler is to optimize the processing of disk requests to improve
I/0 performance and throughput. When a system has a large number of processes sending I/0 requests
to the operating system, a queue of such requests is formed.

When using high-speed devices (NVMe), there is no point in using any scheduler, i.e. you can set the
name to none . NVMe memory device controllers on low-latency buses (PCle) cope with the flow of
parallel requests and do not load the central processors and processor caches , unlike the scheduler
code (especially those with many queues, mqg). With high-speed devices, you can use the kyber
scheduler if you need to reduce the read latency by 2-8 times by reducing the throughput (20-30%)
and increasing the write latency (~50%).

Schedulers since Linux kernel versions 4.12: none mg-deadline kyber bfq

deadline logic means that the criterion is the length of time a request has been in the queue. It is
guaranteed that each request will be serviced by the scheduler. By default, priority is given to read
requests.

After the advent of NVMe SSDs, it became clear that the scheduler code only reduces performance
and elegant software algorithms would have to be abandoned (use none), the blk-mq scheduler was
created .

mq-deadline is a deadline implementation using blk-mq .

kyber uses two queues for write and read requests, kyber prioritizes read requests over write
requests. The algorithm measures the completion time of each request and adjusts the actual queue
size to achieve the configured latencies. Kyber can be used with fast devices and aims to reduce read
latency, with priority for synchronous requests.

Recommendation for virtual machines:

https://access.redhat.com/solutions/5427

Changing the I/0O Scheduler

= the scheduler type can be set separately for different devices and their
types S S D or HDD
= view scheduler for block device :

root@tantor :~# cat /sys/block/ sda /queue/scheduler
none [mg -deadline]

= change the scheduler to another one without rebooting:

root@tantor:~# echo none > /sys/block/ sda /queue/scheduler

= To create a permanentrule, create or edit the file

/etc/udev/rules.d/70-schedulerset.rules
ACTION==" add|change ", KERNEL==" sd [az] ", TEST!="queue/rotational",
ATTR{queue/scheduler}=" none

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 104

Changing the 1/0 Scheduler

Type i/os with heduler used when working with a block device can be viewed:
root@tantor :~# cat /sys/dev/block/ 8:0 /queue/scheduler

or

root@tantor :~# cat /sys/block/ sda /queue/scheduler

[mg —deadline] none

Using mg -deadline .

Changing the scheduler without rebooting:

root@tantor :~# echo kyber > /sys/block/ sda /queue/scheduler
root@tantor :~# cat /sys/block/ sda /queue/scheduler

mg -deadline [kyber] none

root@tantor :~# echo none > /sys/dev/block/ 8:0 /queue/scheduler
root@tantor :~# cat /sys/dev/block/ 8:0 /queue/scheduler

[none] mg -deadline kyber bfg

To create a permanent rule, you can create (you can choose the file name yourself) or edit the existing
file / etc/ udev / rules.d / 70-schedulerset.rules

and add the necessary lines of the form:

ACTION==" add|change ", KERNEL==" sd [a-z] ", ATTR{gqueue/rotational}==" 0 ",
ATTR{queue/scheduler}="none"

Where

ATTR{queue/scheduler}="none" name of the desired scheduler for devices named sda , sdb .. sdz

ATTR{queue/rotational}==" 0 " if the driver reports that the device has the same random and
sequential read speed.

ATTR{queue/rotational}==" 1 " if random access is slower.

If the driver does not set the attribute to O or 1, you can specify:

TEST!="queue/rotational"

In AHCI, there is one queue per port with a depth of 32 commands (i/o request, RQ-SIZE commands
1sblk -td).In NVMe usually 256 , but can be up to 64000.

Physical sector of the disk

= the smallest unit of storage that a physical storage
device can write atomically

= usually has a size of 512KB or 4KB

= for NVMe , Linux uses the value of the Atomic
parameter Write Unit Power Fail (AWUPF) if provided
by the hardware

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 105

Physical sector disk

A physical sector is the smallest unit of storage that a physical storage device can write " atomically ",
meaning either completely written or not written at all. Typically, a physical sector is 512K or 4K.

For NVMe , Linux uses the Atomic hardware parameter value for the physical sector Write Unit Power
Fail (AWUPF), if the hardware provides it to the driver.

The logical sector is used to read and write to the storage device at the software level by the operating
system. The size of the logical sector may differ from the size of the physical sector. You can view the
sizes using the commands:

root@tantor :~# fdisk -1 | grep size

Sector size (logical / physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

root@tantor :~/ flashbench -dev# lsblk -td

NAME ALIGNMENT MIN-IO OPT-IO PHY-SEC LOG-SEC ROTA SCHED RQ-SIZE RA

sda 0 512 0 512 512 0 none 32 128

srO0 0 512 0 512 512 1 mg -deadline 2 12 8

nvmeOnl 0 512 0 512 512 0 mg -deadline 256 128

Some
NVMe and SATA drives support changing the reported sector size using standard NVMe (Format NVM
from the NVM Command Set Specification) or ATA4 (SET SECTOR CONFIGURATION EXT) commands.
For hard drives, this changes the logical sector size to match the physical sector size for optimal
performance. For NVMe , both the logical and physical sector values are changed.

At the first level, the N AND chip consists of several targets , each containing several dies . Each die is
an independent storage unit, which consists of several layers (planes) . Several layers share the same
bus and can be combined into a single unit for multi -layer parallel operations. Each layer consists of
several erase units .

erase unit size determines the granularity of the discard /trim at the firmware level of the SSD
controller (SoC , system-on-chip). Each erase block consists of several pages. A page is the smallest
unit of recording, typically 16 Kilobyte . The size of the erase block varies widely, from 1 MB to tens of
MB.

To improve performance, SSDs can use DRAM to cache both data and Flash Translation Layer (FTL)
mapping tables. FTL is similar to a journaling file system. FTL writes data by adding records to a journal
file. It uses a Logical address mapping table B lock A ddress -Physical Block Address . The problem is
garbage collection - cleaning up unnecessary records.

To improve performance, a list is usually used rather than complex hierarchical structures, but the list
is large, ~1/1000 of the SSD volume . For a terabyte SSD , this is 1GB. SSDs typically use 4KB sectors,
which is optimal for Linux . To reduce costs (save DRAM), some manufacturers use 16KB sectors.

In addition to performance, fault tolerance is important when SoC when the power supply is lost, it
must have time to write the accumulated data. This is achieved by having capacitors in the power
supply circuits of SSDs for industrial use. Garbage collection, wear leveling of erase blocks,
redundancy, and data storage increase the internal traffic of the SSD .

The NVMe 1.4 specification includes metrics that a manufacturer can provide: Preferred Write
Alignment, Preferred Write Granularity, Deallocate alignment , and granularity statistics.

When analyzing performance, you should not use sysbench , since this utility uses test files filled
with zeros. For testing, you should use the fio utilities or flashbench .

Testing with f£sync after each entry:

root@tantor :~# fio --filename=/dev/nvmeOnl --name=a -- blocksize =8k -- rw =
randrw -- iodepth =32 --runtime=10 -- rwmixread =90 -- fsync =1

READ: bw =27.1MiB/s (28.4MB/s), 27.1MiB/s-27.1MiB/s (28.4MB/s-28.4MB/s), 1o
=271MiB (284MB), run=10001-10001lmsec

WRITE: bw =3099KiB/s (3173kB/s), 3099KiB/s-3099KiB/s (3173kB/s-3173kB/s), io
=30.3MiB (31.7MB) , run=10001-10001lmsec

Without fsync

root@tantor :~# fio --filename=/dev/nvmeOnl --name=b -- blocksize =8k -- rw =
randrw -- iodepth =32 --runtime=10 -- rwmixread =90 -- fsync = 0

READ: bw =30.6MiB/s (32.1MB/s), 30.6MiB/s-30.6MiB/s (32.1MB/s-32.1MB/s), io
=306MiB (321MB), run=10001-10001msec

WRITE: bw =3523KiB/s (3607kB/s), 3523KiB/s-3523KiB/s (3607kB/s-3607kB/s), io
=34.4MiB (36.1MB) , run=10001-10001lmsec

Determining the erase block size by testing with the https://github.com/bradfa/flashbench utility:

root@tantor :~/ flashbench -dev# ./ flashbench -a /dev/nvmeOnl -- blocksize =
1024

align 33554432 pre 213us on 287us post 224us diff 68us

align 16777216 pre 199us on 248us post 210ps diff 43.4us

align 8388608 pre 159%us on 230us post 130us diff 85.7 us

align 4194304 pre 228ps on 259us post 257us diff 1léus

align 2097152 pre 197us on 236us post 217ps diff 29.4us

align 1048576 pre 171us on 208us post 210us diff 17.4ps

The utility can be used to determine the optimal RAID stripe size.

Example of checking the recording by fsync when powering off:
https://habr.com/ru/companies/selectel/articles/521168/ with the diskchecker.pl script

Interaction of instance processes with disk

= 8K blocks are read into shared memory via page cache (4K blocks)
= blocks are written to disk via the page cache
= An optimized synchronization algorithm is used for recording

buffer cache cache WAL SLRU caches

Checkpointer Data 8 Kb 8 Kb || 8 Kb 8 Kb 8 Kb 8 Kb 8 Kb 8 Kb
Write and/or fsync
PageSetChecksumCopy () XLogWrite () ->pg_pwrite SlruPhysicdIVfritePage
Prefetch redBuffer 0 0 .
server procgss 0 -> pg_pwrife
8 Kb Ljnux, Page Cachg ,
smgrwrite ()
K K " K K K K
checkpointer _emfﬂa—mﬁa——————__——__# . _ i
HITAB pg_flush da g B = t = -
hash_create ("Pending Ops H _Tile_range () PHY_SEC_SIZE | via PCle bus
Tahle" SSD l
«—— | controller |*—| DRAM nGb
16 Kb 16 Kb SoC e

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 107

Interaction of instance processes with disk

When reading into the buffer cache, the linux recommendation can be used calculate the next two
pages of 4 KB (total PostgreSQL block size BLCKSZ = 8 KB):

PrefetchSharedBuffer () -> smgrprefetch () -> smgrsw []. smgrprefetch =
mdprefetch -> FilePrefetch (,BLCKSZ,) - > posix fadvise (.., BLCKSZ,

POSIX FADV WILLNEED)

To synchronize dirty buffers, the sync file range (fd , offset, nbytes ,

SYNC FILE RANGE WRITE) call is used .Theposix fadvise (fd , offset, nbytes ,
POSIX FADV DONTNEED) call is notused by default, since it has a side effect - in addition to writing
changed pages, it removes both the changed and unchanged page from memory.

For each file writeback calls are performed by block ranges. References to blocks for synchronization
(in the future) are written to a hash table of 100 blocks, created by the hash create function
("Pending Ops Table" or " pending sync hash "..) inlocal memory checkpointer, sorted by
sort_pending_writebacks (..) to arrange the blocks for the block range transfer . fsync () is executed
once for each file (where at least one block has changed) at the end of the checkpoint.

Synchronization requires remembering all files that have changed since the last checkpoint so that
synchronization can be completed before the next checkpoint is complete. Hash table (not linked list)
is chosen to eliminate duplication of commands (operations) for writing the same block. Blocks that
need to be synchronized are stored in hash tables. For file deletion commands, linked list is used , since
there should not be any repeated file deletion commands (operations).

Processes submit operations to the checkpointer process through the CheckpointerShmemStruct
shared memory structure. named "Checkpointer Data" . The list of shared structures and their
sizes are available in the pg shmem allocations view

The number of synchronization calls a checkpoint process makes before going to sleep is limited by

the constants:
/* Intervals for calling AbsorbSyncRequests */
#define FSYNCS PER ABSORB 10
#define UNLINKS_PER_ABSORB 10
/* interval for calling AbsorbSyncRequests in CheckpointWriteDelay */
#define WRITES PER ABSORB 1000
Temporary tables are not synchronized because they do not require fault tolerance.

https://medium.com/@hnasr/following-a-database-read-to-the-metal-al87541333c2

Synchronizing data files with disk

= performs mainly checkpointer postgres=# \ dconfig *flush

= is performed on block ranges by the system e o Cont gurarion paramerers
call: sync file range (fd , offset, nbytes , —;-‘;";‘;“;“;;"‘r: ““““

- - acken us a er

SYNC_FILE_RANGE_WRITE) bgwritez_flusg_after | 512kB

® | = 3 checkpoint flush after | 256 kB
If a write error is returned for the system call wal waiter flush after | 1MB
, the instance will be aborted (4 rows)

and the blocks will be restored from the WAL logs thanks to their full
images (configuration parameter full page writes = on), if
data sync retry =off

postgres=i# select backend type name, sum(writes) buffers written , round(sum(write_time))
w_time , sum(writebacks) writebacks , sum(evictions) evictions, sum(fsyncs) fsyncs ,

round (sum(fsync time)) fsync time from pg stat io group by backend_ type having sum(writes)> 0
or sum(writebacks)> 0 or sum(fsyncs)>0 or sum(evictions)>0;

name | buffers written | w_time | writebacks | evictions | fsyncs | fsync time
——————————————————— B M et S
background worker | 7 | 0 | O | 43 | 0 | O

client backend | 7451184 | 83639 | 0 | 15253670 | 0 | O

autovacuum worker | 61803 | 705 | O | 94784 | 0 | O

background writer | 2344704 | 26415 | 2344704 | | 0 | O
checkpointer | 5595043 | 99818 | 5598779 | | 84627 | 843454
(5 rows)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 108

Synchronizing data files with disk

On Linux to perform fsync for data files the system call is used:

sync_file range (fd , offset, nbytes , SYNC FILE RANGE WRITE);

The call checks that the file's page range has been flushed to disk by the operating system.

The checkpointer process does most of the fsync and only part of the write (copying blocks from the
buffer cache to the linux page cache).

If the default checkpoint_flush_after is nonzero, then synchronization by file block ranges is enabled
because in the PostgreSQL source code :

/* Default and maximum values for backend flush after , bgwriter flush after and checkpoint flush after ;
measured in blocks. Currently, these are enabled by default if sync file range () exists, ie , only on Linux .
Perhaps we could also enable by default if we have mmap and msync (MS ASYNC)? */

ifdef HAVE SYNC FILE RANGE

#define DEFAULT BACKEND FLUSH AFTER 0 /* never enabled by default */

#define DEFAULT BGWRITER FLUSH AFTER 64

#define DEFAULT CHECKPOINT FLUSH AFTER 32

#else

#define DEFAULT BACKEND FLUSH AFTER 0

#define DEFAULT BGWRITER FLUSH AFTER 0

#define DEFAULT CHECKPOINT FLUSH AFTER O

#endif

Usually, server processes do not synchronize data files, this is done by checkpointer and bgwriter . If
in the Checkpointer Data shared memory structure (from which checkpointer moves identifiers to a
hash table in its local memory " Pending Ops Table ™), in which all processes send block identifiers for
synchronization, there will be no space, the server process will start to execute fsyncs . An example will
be considered in part 2 of the practice for Chapter 14 " Executing fsyncs with a stopped checkpointer "

If the operating system refuses to make the call with the error " not implemented " , then the
diagnostic log displays a warning: " could not flush dirty data: "

If the operating system fails to perform the synchronization system call and returns a write error, the
instance is immediately stopped with a PANIC status and the blocks that linux issued a failure in
synchronization will be restored by WAL from the moment of the beginning of the last checkpoint and
using a full image of the block (full page image), and therefore are guaranteed to be restored. You can
disable a crash with PANIC by setting the parameter data_sync_retry to on (default is off) , but you
should not do this, as the data blocks will be damaged.

https://habr.com/ru/articles/803347/

File system block size

= must be equal to the page size - 4Kb

- ext4 file system best choice

= default ext4 parameters are optimal

= list of options with which the file system is mounted:
cat /proc/ fs /extd4d/sdal/options

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 109

File system block size

On 4Kn disks (4096 byte physical sector size and 4096 byte logical sector size), the mkfs utility
will use a block size of 4096 bytes.

On 512e (4096-byte physical sector size and 512-byte logical sector size) and 512n (512-byte physical
sector size and 512-byte logical sector size) disks, mkfs.ext4 defaults to using 1024-byte blocks for file
systems smaller than 512 MB, and 4096-byte blocks for file systems larger than 512 MB.

Linux will only mount filesystems with a block size less than or equal to the memory page size, i.e. 4K.

file system is optimal for the PostgreSQL DBMS .

Mount parameters are specified in:

root@tantor :~# cat /etc/ fstab | grep ext4

UUID=acala090-eba2-49ba-a8fc-bal2e%9e2bf26 / ext4 defaults 1 1
defaults means that the parameters are taken from the file system itself (superblock). The parameters
can be viewed and changed using the tune2fs utility :

root@tantor :~# tune2fs -1 /dev/sdal | grep opt

Default mount options: user xattr acl
The parameters with which the file system is mounted:

root@tantor :~# mount | grep ext4

/dev/sdal on / type extd4d (rw,relatime)

Full list of options: cat /proc/ fs /ext4/sdal/options

default parameters of the ext4 file system being created are optimal, when searching for
recommendations, you need to pay attention to whether they are outdated. For example, the
recommendation to mount with the noatime option deprecated in favor of the faster realtime
option .Parameter no barrier does not significantly increase performance . The data=ordered
parameter means that data blocks are written before metadata is written to the file system journal. The
parameter data= writeback causes file contents to be corrupted.

https://www.enterprisedb.com/blog/postgres-vs-file-systems-performance-comparison

wal sync method parameter

= a system call that is used to ensure that block
records are saved to the WAL file if the fsync
parameter 1is set to 0N

» fdatasync - default value for linux

postgres=# show fsync ;
fsync

on

postgres=# show wal_sync method ;
wal sync method

fdatasync

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 110

wal sync_method parameter

The parameter specifies the method that is used to ensure that records are saved in the WAL file if the
fsync parameter value is on . Possible values:

fdatasync - fdatasync () is called on each (taking into account group commits, which will be
discussed in 6 pages) transaction commit by the server process and on closing the WAL file if it is full.
Default value for Linux . Space for WAL files is pre-allocated and files are created in advance, so
synchronization of file system metadata is not needed, hence fdatasync fault tolerance same as

fsync .
open datasync -the WAL file is opened for writing with the O DSYNC parameter
fsync - fsync () is called every time a transaction is committed by the server process (taking

into account transaction grouping) and when the WAL file is closed if the file is completely full

open sync - the WAL file is opened for writing with the O SYNC parameter .

fsync parameter is set to on ,the instance does not ensure that the write to the WAL file has
been completed. Modified blocks may remain in the operating system cache by default for up to 5
seconds (the commit parameter of the ext4 file system) and will be lost if the operating system
suddenly stops or the power is lost.

This parameter does not affect synchronization of data files, only WAL files. When synchronizing data
files , fsync system calls are used , fdatasync is not used with data files, since data files can grow in
size.

WAL write guarantee

e fsync () or fdatasync () system calls, called after a
COMMIT log record is written to the WAL with
wal sync method = fdatasync or fsync ensure thatthe
writing of data blocks to the WAL file is completed by the
disk controller before the result from these functions is
returned.

= before writing to a WAL file, it is created (renamed) in full
size and while writing to it, its metadata does not change and
the guarantee of writing to the file system journal for writing
to WAL does not matter

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 11

WAL write guarantee

Calls to the operating system fsync () And fdatasync () guarantee that the writing of data blocks
to the WAL file will be performed by the disk controller: " includes writing through or flushing a disk
cache if present. The call blocks until the device reports that the transfer has completed” as described
in the call description:

https://man7.org/linux/man-pages/man2/fsync.2.html

Since the WAL file is created (renamed) to full size before being written to, the attributes of the WAL
file do not change during writing to the WAL file, and the JBD2 log does not play a role while the
instance processes are writing to the WAL file .

For reference, let's look at how fault tolerance of writing to file system logs is guaranteed. To ensure
that file system log blocks do not linger in the disk cache, cache flush calls and the Force option are
used. Unit Access (O FUA). When using journal=ordered (others should not be used) first a write
command is sent to the disk controller. Then all changed journal blocks are written to JBD2 . Then a
cache flush command is sent to the disk controller - to write everything that is in the disk controller
cache to ensure that the data blocks and journal blocks are saved and protected from loss during a
power failure. Next, one commit block is written to JBD2 , indicating that the transaction has been
successfully completed. This ensures that the transaction is atomic in the log. The commit block is
written using the O FUA , which can be set to write only one block (rather than multiple blocks) and is
a lightweight operation since it does not perform a full cache flush. Since a transaction in JBD2 consists
of at least 3 blocks, a cache flush is performed on each commit. If a transaction in the fastcommit log
consists of a single block, then 0 FUA is used when writing to the fastcommit log , rather
than cache flush.

Fast commits of changes in the ext4 file system journal (
fast_commit)

= If WALs are on a separate filesystem, then fast commit will not
improve performance.

- commit parameter (default 5 seconds) sets the frequency of
calling sync on the file system

= quick commits work in data=ordered mode

= fsync execution latency and fdatasync but only if the
metadata has changed

= writing to the fastcommit log is done by the process that called
fsync

= writing to the regular log is done by a kernel thread

= fast commit works not only with ext4 but also with other
journaling file systems

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 12

Fast commits of changes in the ext4 file system journal (fast commit)

ext4 file system records changes in metadata (what blocks contain what) in a JBD2 -type journal
separately for each mounted file system. The write is performed according to transaction logic to avoid
damage in case of power failure. The commit parameter (default 5 seconds) specifies the frequency of
calling sync . fsync writes changes only to the file for which it is called.

By fsync flushes all dirty blocks and metadata for all file descriptors. This can create a lot of I/0 that is
not needed to save changes to a single file via fsync .

If you remove the directory PGDATA/pg wal to a separate file system section where nothing but WAL
files will be stored, this is not essential for WAL . This plays a role when files are frequently created and
deleted. Temporary table files can be frequently created, deleted and resized, which is relevant for 1C
applications.

Advantages of quick fixation:
fast commit writes one 4K block, and committing changes to JBD2 stores at least 3 blocks (6 blocks
on average) per commit . The fast commit log contains operations performed since the last standard
commit, which is called by default once every 5 seconds. If fast commits cannot handle an operation,
writing to JBD2 is used . Increasing the commit frequency may cause fsync will be executed more often
by writing to JBD2. The commit parameter also correlates with the vm.dirty expire centisecs
parameters and vm.dirty writeback centisecs
<\Writing to JBD2 requires at least two execution context switches, since writing to JBD2 is done by a
kernel thread. Writing to the fastcommit log is done by the process that called fsync . Using schedulers
other than none under heavy CPU load can increase the difference.

fsync latency , the latency when using fast commit has less variance than JBD2 writes.

Fast commit works not only with ext4 , but also with file systems using other journal types (xfs , jfs).

Quick Fix Description:

https://www.usenix.org/system/files/atc24-shirwadkar.pdf

pg_test fsync twice and pgbench -c¢ 3 -t 5 0000 on virtual machines . The number of clients is
3, since there are 4 processors, with a larger number the bottleneck became would be a processor.
fast commit enabled:

postgres@tantor :~$ pgbench -c¢ 3 -t 5 0000

number of transactions actually processed: 15 0000/ 15 0000

latency average = 2.147 ms

initial connection time = 12.987 ms

tps = 1397.598698 (without initial connection time)

root@tantor :~# cat /proc/ fs /jbd2/sdal-8/info

895 transactions (867 requested), each up to 16320 blocks

average:

844ms running transaction (number of milliseconds the transaction was running)

3447us average transaction commit time

90 handles per transaction (number of filesystem transaction handles for journal transaction)
3 blocks per transaction (nhumber of filesystem blocks in the transaction)

5 logged blocks per transaction (total number of blocks written to the journal for this

transaction, including journal overhead)

root@tantor :~# cat /proc/ fs /ext4/sdal/ fc_info

fc stats:

fc stats:

180988 commits

731 ineligible

181026 numblks

596us avg commit time

fast_commit disabled :

postgres@tantor :~$ pgbench -c¢ 3 -t 5 0000

number of transactions actually processed: 15 0000/ 15 0000

latency average = 2.125 ms

initial connection time = 12.188 ms

tps = 1411.806469 (without initial connection time)

root@tantor :~# cat /proc/ fs /jbd2/sdal-8/info

27446 transactions (27430 requested), each up to 16384 blocks

average:

12ms running transaction

4447us average transaction commit time

2 handles per transaction

1 block per transaction

3 logged blocks per transaction

The data provided mostly relates to work pg test fsync

150000 COMMITs called 150000 fdatasync () but they were processed by 22 commits in JBD2 both
with fast commit enabled and disabled , i.e. once every 5 seconds . This is not visible in the example,
to measure this you need to reread info before starting pgbench and during pgbench operation , it will
be visible that commits in JIBD2 occur once every 5 seconds.

fast commit enabled In JBD2, each transaction wrote slightly more blocks, and also wrote blocks
(150,000 out of 181,026 numblks) to the fastcommit log on each COMMIT .

If you enable fsync instead of fdatasync , the difference in TPS will be greater: 970 (with

fast commit enabled) and 1300. In this case , there will be 590 and 28600 fixations in JBD2 .

This applies to logging. Data block writes to the WAL file are guaranteed to be written on every
COMMIT.

Fast commits of changes in the ext4 file system
journal (fast_ commit)

= commit parameter (default 5 seconds) specifies how often
sync is called on the file system.

= quick commits work in data=ordered mode

- Enable quick commits:

root@tantor :~# dumpe2fs /dev/sdal | grep Fast
dumpe2fs 1.47.0 (5-Feb-2023)

Fast commit length: O

root@tantor :~# tune2fs -0 fast commit /dev/sdal
tune2fs 1.47.0 (5-Feb-2023)

root@tantor :~# dumpe2fs /dev/sdal | grep Fast
dumpe2fs 1.47.0 (5-Feb-2023)

Fast commit length: 256

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 114

Fast commits of changes in the ext4 file system journal (fast_commit)

To support fast commits, a fast commit log is needed for operations.

Quick commits work in data=ordered mode .

Check if the quick commit log is available:

root@tantor :~# dumpe2fs /dev/ sdal | grep Fast

Fast commit length: O

Zero means not available and fast commits are not used. To enable logging:

root@tantor :~# tune2fs -0 + fast commit /dev/sdal

root@tantor :~# dumpe2fs /dev/ sdal | grep Fast

Fast commit length: 256

A non-zero value means that the fast commit log is available on this file system. The file system must
be remounted for fast commits to be used. You can verify that they are in use by looking at the fast
commit statistics: cat /proc/ fs /ext4/ sdal / fc_info

Also check if the fast commit log is available you can use the command:

root@tantor :~# tune2fs -1 /dev/ sdal | grep fast commit

Filesystem features: has journal ext attr resize inode dir index

fast commit filetype needs recovery extent 64bit flex bg sparse super

large file huge file dir nlink extra isize metadata csum

Disconnection fast_ commit :

root@tantor :~# tune2fs -0 * fast commit /dev/ sdal

Why by default fast commit log not created ? For normal desktop use where fsync fast commit is
not called often does not provide any performance gain. Writing to JBD2 occurs regardless of the
presence of fast commit and the volume of writing to JBD2 does not decrease.

Astralinux 1.8.1 has version 1.47.0 installed .

fast commit on and off supported since version 1.46 (2021):

" E2fsprogs now supports the fast commit (COMPAT_FAST _COMMIT) feature. This feature, first
available in Linux version 5.10, adds a fine-grained journaling which improves the latency of the fsync
(2) system call. It should also improve the performance of ext4 file systems exported via NFS."
https://e2fsprogs.sourceforge.net/e2fsprogs-release.html

Utility pg test fsync

= a command line utility that performs standard tests to
evaluate performance when choosing a value for the
wal sync method parameter

postgres@tantor :~$ pg_test fsync
5 seconds per test
O DIRECT supported on this platform for open datasync and open sync
Compare file sync methods using one 8kB write:
(in wal sync method preference order, except fdatasync is Linux's default)
open datasync 3396.549 ops/sec 294 usecs /op
fdatasync 3459.610 ops/sec 289 usecs /op
fsync 3136.642 ops/sec 319 usecs /op
fsync writethrough n/a
open sync 3275.082 ops/sec 305 usecs /op
Compare file sync methods using two 8kB writes:

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 115

pg_test fsync utility

A command line utility that runs tests to evaluate the performance when choosing a value for the
wal sync_method parameter . The utility writes one or two 8K blocks to a test file, just as the
process that saves a transaction commit record to a WAL file does.

The utility gives the number of block writes per second, which can serve as an estimate for the
maximum TPS (transactions per second) for small transactions if the bottleneck is writing to WAL files.

By default, each method is tested for 5 seconds.

pg_test_fsync prints the average time of a file system synchronization operation for each
wal sync method , which can be useful when choosing a value for the parameter commit delay if
you plan to use commit siblings . These two parameters can increase TPS if the instance has a
large number of concurrent committing transactions and the bottleneck is writing to WAL files.

Support for 0 DIRECT means that the operating system supports direct I/0 and can (but does not
need to) use the debug_io direct option .

Group commit transactions

pgbench TPC-B RW, SF=200000

= transactions can be recorded in
groups

= When processing a COMMIT , it is
not necessary that every server e T T e
process writes to the WAL file.] N

= the journal subsystem is usually not
a bottleneck, but it guarantees fault
tolerance

= the algorithm for working with WAL
ensures scalability : with an increase
in the number of sessions to ~500, "~

TPS rOWS 94CPU, 1120GB RAM, LVM 5TB, shared buffers=384GB
g} 48CPU, 560GB RAM, LVM 5TB, shared buffers =192GB

46CPU, 560GB RAM, LVM 5TB, shared buffers =192GB

HW - physical server Tantor xData 96CPU, 1536GB RAM, 18TB SSD
shared buffers =384GB

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 116

Group commit transactions

If writing the log buffers to disk takes time, and during this time other server processes execute
COMMIT , then it cannot be said that flushing the buffers will be performed by each of these processes.
The largest delay is usually caused by the execution of the call that guarantees writing the buffers to
disk (flush cache) - by default fdatasync . This is achieved by the algorithm of the processes
working with the log buffer and the logic of obtaining locks.

When a process wants to flush its buffers, it must acquire a WALWriteLock lock . If the process
acquires it immediately, it becomes the " leader " and begins flushing all buffers accumulated in the log
buffer, and then gives fdatasync (unless another guaranteed write method is used). Other processes
that have generated a record of their COMMIT and those ready to flush buffers to disk also queue up for
the WALWriteLock lock .When the lock becomes available, none of the processes in the queue
immediately obtains the lock that has become available. Instead, each process checks again whether
the buffers have been flushed before and including the journal entry with COMMIT their transactions.
Often processes detect that the log records have been flushed by the " leader "' . In this case, the
processes refuse to acquire the lock, write to the WAL segment and confirm to the client that the
transaction is committed. With significant delays in the execution of fdatasync and high transaction
frequency, a small portion of processes (the " leaders ") will flush the buffers. It turns out that
transaction commits are processed by a group (batch) . Due to this algorithm, the journal subsystem is
usually not a bottleneck.

https://pgeoghegan.blogspot.com/2012/06/towards-14000-write-transactions-on-my.htmi

https://rutube.ru/video/private/e9a69100951dd2865db96ec49293423c/?p=G5067rhW71F2GeS7U3cJ

7Q

commit delay parameters and

gq]%%cpnﬁgujfgf%%ggasmeter sets the maximum delay in
microseconds that the server process will wait after creating a log
entry with CoMMIT. in the WAL buffer before calling the write
command to the WAL file if there is commit siblings open
transactions and fsync =on

= the default value is zero, there is no delay

= does not speed up writing to WAL

= can be used to limit TPS so that a bottleneck does not occur in a
subsystem other than WAL

= commit delay Vvalue to start with is half the delay reported by
pg test fsync for the wal sync method being used

= change values of commit delay parameters and
commit siblings does not require instance restart

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

commit delay parameters and commit siblings

commit delay parameter sets the maximum delay in microseconds that the server process will wait
after creating a log record with coMMIT. in the WAL buffer before calling the write command to the
WAL file. The default is zero - no delay. The server process will wait if: after the journal entry is
generated, the instance has at least commit siblings open transactions, fsync =on . Moreover, the
first server process that is ready to send a command to write (to flush accumulated blocks of the log
cache to disk) waits for commit delay , the processes following it that will form a log record with
COMMIT wait only until the first waiting process flushes its log record, their log records (which were
created in the buffer while the first process was waiting) and everything that has accumulated in the
buffer by the end of the wait. This logic has appeared since version 9.3 of PostgreSQL , the parameter
itself appeared in version 7.1 when the flush to disk methods worked inefficiently.

Because fdatasync works fast enough, has a group transaction commit algorithm, commit delay
does not speed up writing to the WAL file. This option can be used if a large number of transactions per
second is stressing the instance so that a bottleneck occurs in a system other than the log file that is
difficult to resolve other than by reducing the number of transactions per second (TPS) by inserting a
small delay into the COMMIT command . The application is expected to encounter a decrease in TPS,
will not increase the number of sessions. The heavy load usually occurs not with 5 sessions, but on
strands more, therefore the value of commit_siblings should be large enough. An analogy can be
drawn: with laminar flow of liquid the throughput of the pipe is high, with turbulent it decreases and
causes vibration of the pipe and it is necessary to ensure that the liquid pressure is limited when the
flow becomes turbulent somewhere usually in the narrowest place.

a commit delay value of half the delay reported by pg test fsync for the wal sync method
being used (usually fdatasync).

Typical range of values commit delay 20 0-1000. For commit siblings ~500.

Changing the values of the commit delay parameters and commit siblings does not require an
instance restart. Changing the commit delay value requires the modify privilege or the superuser
attribute , commit siblings can be changed by any user.

https://postgresglco.nf/doc/en/param/commit_delay/

https://pgpedia.info/c/commit_delay.html

/0 bus commands discard /trim

= important for SSD

= trim - for SSD on SATA bus

= discard - for SSD on pci bus

= SSD controller does not know that there are files on it
and that there are file systems

= the operating system must send commands to clear
blocks (physical sectors) whose contents it does not
need

= write resource in SLC mode ~ 100000 cycles

= non-SLC write resource ~1000 cycles

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 118

I/0 bus commands discard /trim

When using SSD on any bus - PCle (NVMe) or SATA, the operating system must inform the device
controller that the contents of physical blocks are not needed by the operating system. The SSD
controller does not know that there are files and file systems on it. The operating system must send the
trim (for the SATA bus) or discard (for the PCIl bus) command to clear blocks (physical sectors) .

After disk initialization and partition creation, data about which blocks are used is stored in the file
system. It is critical for SSD to receive data from the operating system that some blocks are not used by
the file system and can be cleared.

For example, SSD was initialized, partition created, formatted and mounted. SSD device FTL table
stores only a few records that several blocks are used by the operating system. The partition starts to
fill with files. SSD controller writes them to "SLC cache " (high-speed physical layer with resource of
about 100000 write operations) . Maximum SLC size depends on memory chips. Currently common
TLC 3 bits (SLC maximum 1/3 minus reserve blocks, in practice less , since it depends on the algorithm
by which the controller uses SLC), for cheap QLC 4 bits (SLC maximum 1/4 of the size minus reserve
blocks).

While the SLC is filling , the controller (depending on the controller’'s operating algorithm) can move
blocks from the SLC to other layers, writing to which is several times slower, but the most important
thing is that the number of records to such layers is small - about 1000. Also, if the SLC cache is full,
the controller can write received blocks to other layers at a speed several times slower. Files can be
deleted in the file system and space can be freed. The controller will not know about this, since the
mark that the file system has stopped using such and such blocks is stored only in its metadata. In
order for the SSD to know that the blocks occupied by deleted files are no longer needed, the operating
system must, when deleting a file in the file system, send the SSD controller the discard or trim
command , specifying the range of blocks that are no longer needed (usually those occupied by the
file, if the file system did not combine several files into one block to save space). Whether Linux will
send such a command is set in the file system mount properties.

You should not rely on the fact that when initializing an SSD (creating a GPT/MBR partition) or when
creating a file system with the mkfs.ext4 command, a discard will be performed on the entire range of
blocks. If an SSD was used, it is worth initiating a discard separately .

Support discard/trim

= if the controller does not have free blocks, the write
speed and lifespan of the SSD will be low

= SSD controller usually clears in blocks of erase
size

root@tantor:~# tune2fs -o +discard /dev/sdal
root@tantor:~# tune2fs -1 /dev/sdal | grep discard
Default mount options: user xattr acl discard
root@tantor :~# fstrim -v /

fstrim : /: the discard operation is not supported
root@tantor :~# 1lsblk --discard

NAME DISC-ALN DISC-GRAN DISC-MAX DISC-ZERO

sda 0 OB OB O

L_sdal 0 0B 0B 0

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 119

Discard/trim support

To clean up a previously used SSD, you can use the blkdiscard utility .

To clean up blocks not used by a mounted file system, you can use the fstrim utility .

SSD controller cleans in blocks of size erase size . If the range of blocks does not fit into the
boundaries of erase size ,then discard for physical blocks falling on part of the block, the erase
size is usually ignored (the behavior of the SSD is completely determined by the controller firmware)
and such blocks are not cleared. The erase size there could be tens of megabytes.

In the description (issued by the man command) fstrim utilities It is written that for most desktops
and servers it is enough to run it once a week.

The file system can be mounted with the discard option and when a file is deleted from the file system,
the discard/trim command will be sent . The time it takes for the controller to execute the trim
command (unless it is given across the entire SSD) may be proportional to the number of blocks. If the
file size is large, the controller may suspend receiving commands from the operating system for some
time. PostgreSQL does not use large files. In Tantor DBMS, the maximum size of data and log files is 1
GB. However, linux can also serve other applications, for them they came up with a logic according to
which the file system is mounted without discard , while cleaning is performed by the fstrim
service . lItis better to enable dicsard inthe ext4 mount parameters .

discard property can be set in the superblock ext4 as default mount option: tune2fs -o +discard
/dev/sdal orin /etc/ fstab

/dev/sdal/ext4 rw,discard 0 0

For LVMin /etc/lvm/lvm.conf : devices { issue discards = 1 }

For encrypted partitions in /boot/grub/grub.cfg

check whether discards were sent to the SSD controller using the following commands:

root@tantor :~# fstrim -v /

fstrim : /: the discard operation is not supported

root@tantor :~# 1lsblk --discard

NAME DISC-ALN DISC-GRAN DISC-MAX DISC-ZERO

sda 0 OB 0B O

L-sdal 0 0B 0B 0
Zeros in DISC-GRAN And DISC-MAX means that discard not used.

Recommendations for using SSD

= Itis not recommended to actively write to the SSD if the percentage of
filling more than ~ 80% (depends on SSD controller algorithm)

= In order to always have a part of the SSD free, you can create a
partition smaller than the SSD

= status of the service performing discard(trim) on unused blocks on file
systems using discard(trim) -capable devices :

root@tantor:~# systemctl status fstrim.timer

fstrim.timer - Discard unused blocks once a week
Loaded: loaded (/lib/systemd/system/fstrim.timer; enabled; preset: enabled)
Active: active (waiting) since ..; 7h ago

Trigger: 1 day 6 hours left

Triggers: fstrim.service

Docs: man:fstrim

systemd[1]: Started fstrim.timer - Discard unused blocks once a week.

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 120

Recommendations for using SSD

When working with SSDs, the nvme utility is useful . It is installed in the nvme-cli package , which
depends on the uuid-runtime package:

root@tantor :~# apt install nvme-cli uuid-runtime -y

The number of blocks that can be cleared at the same time may be limited. You can see the limits:
/sys/block/ sda /queue/ discard max hw bytes

"Many experts recommend limiting SSD usage to only 80% of its total capacity™:

https://www.seagate.com/nl/nl/blog/what-are-ssd-trim-and-garbage-collection/

In order to always have a part of the SSD free, you can create a partition smaller than the SSD.

It is recommended to periodically (once a week) clean up unused blocks, this is done by the fstrim
service .

https://wiki.archlinux.org/title/Solid_state_drive/Memory_cell_clearing

Under Windows operating system , cleaning can be performed manually using the command in an
elevated command prompt:

powershell -command optimize-volume - driveletter C - retrim -verbose

Disabling the JBD2 journal in the ext file system without losing data is possible with the command:

tune2fs -0 * has_journal /dev/sdal

tune2fs 1.47.0 (5-Feb-2023)

The has journal feature may only be cleared when the filesystem is

unmounted or mounted read-only.

Enabling JBD2 Logging :

tune2fs -0 + has_journal /dev/sdal

https://wiki.astralinux.ru/pages/viewpage.action?pageld=48759308

Parameter max_files_per_process

= default value 1000

= when the value is reached, the server process will
frequently close and open files

= a large number of files may be opened if the
commands work with a large number of relations or
tables consisting of a large number of gigabyte files

select setting, min _val,max val,vartype , short desc from pg settings where
name = ' max files per process ';

setting | min val | max val | vartype | short desc
_________ _|_____j____+____j______+_________+____j________________________
1000 | 64 | 2147483647 | integer | Sets the maximum number of
simultaneously open files for each server process.

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 121

Parameter max files per process

At working with a large number of objects, for example, a server process can open many files. Each
table has three layers plus a TOAST table and index. With a large amount of data, the main layer can
consist of a large number of gigabyte files (up to 32K). The cluster parameter
max_files per process limits the number of files that can be opened by each server process.
Shared libraries are not taken into account. The default value is 1000. If the server process must work
with a large number of files for a short time, then you can increase the value of the parameter,
otherwise the server process will be forced to close and open files frequently. A large number of files
can be opened in sessions servicing 1C applications.

The value 1000 is set based on the fact that older versions of operating systems set a limit on the
number of open files in /etc/security/limits.conf (nofile parameter) Orin
/etc/systemd/*.conf (LimitNOFILE parameters, LimitNOFILESoft , DefaultLimitNOFILE).
Setting these files to values other than infinity causes the kernel to collect statistics on open files, which
does not speed up its operation.

root@tantor:~# cat /proc/sys/fs/file-nr

6336 0 9223372036854775807

the first number is the total number of open files in linux , the second is the number of open but not
currently used files, the third is the maximum possible number of open files.

The maximum value of the max _files per process parameter is:

postgres =# select setting, min_val,max val,vartype , short desc

from pg settings where name = ' max files per process ';
setting | min val | max val | vartype | short desc
————————— o e e e e e e e e

1000 | 64 | 2147483647 | integer | Sets the maximum number of
simultaneously open files for each server process.

View the number of files opened by the process (PID=854) :

root@tantor :~# lsof -p 8 52 | wec -1

66

InCcrease max_files_per_process values

= When increasing the value of this parameter, you need to make sure that the
operating system does not limit the number of open files:
| ERROR: could not open relation 5/16550: Too many open files in system |

= real limitations of running processes: o _

uniq

Vi] 1024
TIer Per—rTTTeS—rto="

= restrictions on processes launched not through services:
sudo -u postgres bash -c ' ulimit -n'

1024

* inthe file /etc/security/limits.conf add lines:

postgres hard nofile infinity
postgres soft nofile infinity

< inservices files / usr /l1ib/ systemd /system/ tantor * add after
[Service]

D2A4200 o
o 3= == = =

LimitNOFILE = infinity
LimitNOFILESoft = infinity

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 122

Increase max files per process values

The default value ismax files per process =1000 .When increasing the value of this parameter,
you must ensure that the operating system does not limit the number of open files. Example of errors:

ERROR: could not open relation 5 / 16550 : Too many open files in system

Check the real limits of already running processes named postgres:

for PID in $(pgrep "postgres"); do cat /proc/$PID/limits | grep files; done | uniq

Max open files 1024 524288 files

In the example, the soft 1imit is 1024, the hard limit is 524288. When exceeding s oft
limit the process will receive a warning. When exceeding hard limit The process will not be able
to open new files until previously opened files are closed.

soft limit for one process of the postgres user you can see it with the command:

sudo -u postgres bash -c ' ulimit -n'

1024

With the parameter -n (maximum number of open file descriptors) YyoOu can use

parameters - S (soft) or - H (hard) :

sudo -u postgres bash -c¢ ' ulimit - Hn '

1048576

To change the limits for instances started manually with the pg ctl utility , in the
/etc/security/limits.conf file you need to add or change the lines:

postgres hard nofile infinity

postgres soft nofile infinity

On those launched via systemd instances this will not work. You need to edit the file / usr /1ib/
systemd /system/tantor-se-server-16.service , adding after [Service]

LimitNOFILE = infinity

LimitNOFILESoft = infinity

Setting a value other than infinity forces the kernel to collect statistics on open files, which does not
speed up its operation.

after editing update systemd configuration and restart the instance:

systemctl daemon reload

systemctl restart tantor-se-server-16.service

Alternatively, you can edit with the command systemctl edit tantor-se-server-16.service
paying attention to which file will be edited.

Temporary file system (tmpfs)

= a file system that uses RAM to store files
- Tantor DBMS does not use tmpfs for storing files
e don't use tmpfs

rootétantor :~# mount | grep Ttmp

udev on /dev type devtmpfs

tmpfs on /run type tmpfs

tmpfs on /dev/ shm type tmpfs

tmpfs on /run/lock type tmpfs

ramfs on /run/credentials/ systemd - tmpfiles -setup- dev.service type
ramfs

ramfs on /run/credentials/ systemd-tmpfiles-setup.service type ramfs
tmpfs on /run/user/102 type tmpfs

tmpfs on /run/nser /1000 type tmpfs

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 123

Temporary file system (tmpfs)

tmpfs (temporary file system , temporary file system), previously known as shmfs . There is an
analogue of ramfs . These are file systems that use RAM to store files. After rebooting the operating
system, the files in them disappear. If the operating system uses swap , then tmpfs blocks from
memory can be pushed out to swap partitions or files .

Tantor DBMS does not use tmpfs for storing files and do not need to store them in it. In the
PostgreSQL DBMS up to version 15, statistics were collected in the directory specified by the
pg _stat tmp parameter , by default PGDATA/ pg stat tmp . The recording was so active that it
was necessary to mount this directory in tmpfs . In version 15, this unfortunate functionality was
changed, but recommendations were written and only confuse. Files related to temporary tables and
indexes on temporary tables can be created in table spaces. These files are created in subdirectories
named pgsgl tmp . For example, PGDATA/ base / pgsgl tmp iS consonant with pg stat tmp
and the administrator's memory may pop up with a recommendation to mount something using the
tmpfs file system . The table is temporary, but the files are permanent. These files cannot be
stored on tmpfs and it makes no sense at least because the table can grow to 32 TB
and either there will not be enough space (if you limit the size of the tmpfs file
system when mounting), or there will not be enough RAM and the swap partition (or file) will be used ,
or oom Kill will start stopping processes with the SIGKILL signal .

Old versions of linux operating systems could mount temporary directories as tmpfs (/tmp) . This is
not used now and is not recommended to use, if only because the speed of writing to RAM of large
volumes without using Huge Pages is usually slower than writing to modern NVMe (up to ~ 8 gigabytes
per second on a PCI 4x4 bus).

In modern versions of Linux the file system is tmpfs used to store some virtual service directories (
/run , /dev/ shm) with small files, or functionality whose code was written a long time ago, works
and there is no point in rewriting.

RAID

- array of " disks " (storage devices)
= used as a volume (single block device)

RAID 1 RAID 6 RAID 10 (or 1+0)
+ High fault tolerance; data is + Similar to RAID 5, but with + High speed and fault
duplicated. double checksum for greater tolerance.
- Storage capacity is limited by fault tolerance. — Requires at least 4 discs; high
the size of one disk; write speed - Slower writes compared to cost.
is lower. RAID 5;

minimum 4 discs required.

RAID 5 RAID O
+ Balance between speed and + High read and write speed. Speed
_______________ fault tolerance; - No fault tolerance; loss of one
uses a checksum. disk results in loss of all data.
— Write hole problem; requires at
least 3 disks.

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 124

RAID

Term RAID was born in 1987 as an abbreviation for Redundant Array of Inexpensive Disks (an array of
inexpensive redundant disks). It was proposed to use a set of inexpensive unreliable disks, instead of
large-capacity disks " SLED" (Single Large Expensive Drive). Later Inexpensive was replaced by
Independent , as they started using expensive disks . In types (" levels ") :

RAID O (stripe) - stripes are distributed across all disks, no fault tolerance

RAID 1 (mirror) - duplication (mirroring) . High overhead .

RAID 2, 3, 4 are not used in practice;

RAID 5 (stripe with parity) - stripe with parity data is distributed across all disks, disks are equal. It has
become widespread due to small overhead costs: a mirror has costs of half the disks versus one disk.
Protects against the loss of one disk. Disadvantages: the speed of writing in random order (Random
Write) is 10-25% lower when compared to RAID O (stripe alternation without parity control) , since
each write operation is replaced by two read operations and two write operations. When replacing a
failed disk, initialization of a new disk is accompanied by a heavy load on the existing ones, which can
lead to the failure of other disks and complete loss of the array without the possibility of recovery. It is
not recommended to use with a DBMS.

RAID 6 (double parity) - resistant to failure of two disks. Disadvantages: recording speed up to ~ 2
times lower than RAID 5; high overhead costs. Minimum 4 disks.

RAID 10 (1+0) mirrored pairs of disks. Overhead as a mirror - half the size of the disks. Minimum 4
disks.

RAID 50 (5+0) minimum number of disks 6. Stripes with parity are duplicated. Overhead: two disks.

RAID support is available in linux at the kernel level. Linux supports software RAID levels O, 1, 4, 5, 6,
1+0. Using the volume manager, you can combine levels to get 5+0. You can manage RAID devices in
Linux using the mdadm utility . Software RAID uses CPU resources. CPUs are usually not a bottleneck
for DBMS.

Oracle ASM (the volume manager and cluster file system for storing Oracle Database files) uses a
software (not Linux kernel level) RAID (double, triple stripe duplication , or no duplication).

You can also use hardware mirroring and RAID (Intel Matrix).

LVM

= Logical Volume Manager

= combines physical disks into groups - Volume Groups (VG) on which
logical partitions can be created Logical Volumes (LV)

= You can resize LVs and add new disks to VGs without moving data or
changing file systems

= LVM does not increase performance, it adds an additional level of
abstraction, which increases the likelihood of errors when
reconfiguring e

= used when creating RAID 5+0 : —

vgcreate vg0 /dev/md0 /dev/mdl

lvcreate -L 100%FREE -n 1v0 vgO0 | GE—— '
mkfs.extd /dev/vg0/1v0 -

mount /dev/vg0/1lv0 / mnt /raid50

mdadm --create /dev/md0 --level=5 --raid-devices=2 /dev/sdl /dev/sd2 Logical Volume Logical Volume %i
mdadm --create /dev/mdl --level=5 --raid-devices=2 /dev/sd3 /dev/sd4 + A
pvcreate /dev/md0 ; 1
pvcreate /dev/mdl : [Volume Group] %

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 {25

LVM

Logical Volume Manager (Logical Volume Manager). Allows at the operating system level (" logically "
) combine physical storage devices (" disks ") into groups - Volume Groups (VG) on which logical
partitions can be created Logical Volumes (LV) - Logical partitions can be used in the same way as
regular hard disk partitions. The advantage is that you can resize LVs and add new disks to a VG
without moving data or changing file systems.

LVM does not improve performance and adds an extra layer of abstraction, which increases the
likelihood of errors when reconfiguring.

LVM is used when there are no hardware storage arrays and separate devices must be used.

LVM is also used to create RAID 5+0. Example:

1) Partitions are created on disks , block devices of the type /dev/ sdN appear

2) Creating two R AID 5:

mdadm --create /dev/md0 --level=5 --raid-devices=2 /dev/sdl /dev/sd2

mdadm --create /dev/mdl --level=5 --raid-devices=2 /dev/sd3 /dev/sd4

3) Combining RAID 5 into physical volumes (PV, Physical Volume):

pvcreate /dev/md0

pvcreate /dev/mdl

4) Unification PV in VG:

vgcreate vg0 /dev/md0 /dev/mdl

5) Creating a logical volumes (LV):

lvcreate -L 100%FREE -n 1lv0 vgO

6) Format and mount the logical volume :

mkfs.ext4d /dev/vg0/1vO0

mkdir / mnt /raid50

mount /dev/vg0/1lv0 / mnt /raid50

For rotational disks (HDD) combined into RAID, you can set the effective io concurrency
parameter inthe number of disks across which data is distributed (striping) . The parameter enables
or disables (the value is zero) the preliminary fetching of table blocks in the Bitmap Heap Scan index
access method . In addition to the usual levels, the parameter can be set in the tablespace properties,
like the maintenance io concurrency parameter .

Practice

= Part 1. Disk subsystem parameters

= Part 2. Installing packages in Astralinux

= Part 3. Working with SSD and testing disk performance with
the fio utility

= Part 4. Testing the ext4 fastcommit journal

= Part 5. Removing the limit on the number of open files

= Part 6. Example of command files for testing

= Part 7. Example of creating programs for testing

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 126

Practice

In the practice, you will compare the performance of SATA and NVME interfaces of a virtual machine
on the same physical device and verify that using the NVME interface is 10% faster than SATA .

Find out that NVME devices are formatted by default not in ext4, but in ext2 , and find out whether
ext2 provides any advantages.

You will learn how to enable the fast commit log and what parameters to use to evaluate file system
performance.

Changes to the limits.conf file to remove the limit on the number of open files do not affect services.
You will learn the procedure for removing the limit and commands for checking the actual limits.

NLor

5
Initial setup of DBMS

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 127

Configurators

T K AT Napaeepon rEseimgpre e m POitgresOe — Mol frehes - 0 X
B | @ roswrparop nigassiety X | + =

- configurator utility « ¢ o

i \Fl’v%—b Versgilon e o
http://tantorlabs.ru/pgc
onfigurator

= are introduced host
characteristics and
planned load

= gives configuration
parameters

£
1ANEOr Kouguryparop kpuTHYECKH BakHEX NAPaMETPOB NPOM3BOANTENLHOCTH PostgreSOL

Jocrymoe kommecTeo agep CPU

GO KEMMBETBO SR
e T HAM, ME

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Configurators

The database cluster is created by the initdb utility . The utility creates the postgresql.conf file with
default values. These values are designed to service a not very loaded application so that the DBMS
can be used on the desktop by an ordinary developer. In the Tantor DBMS, the initdb utility does not
change the parameter values compared to PostgreSQL initdb . It is assumed that the parameters for
production use will be configured separately.

For initial configuration, you can use the pg_configurator utility created by and supported by Tantor
Labs . The utility is available on the website https://tantorlabs.ru/pgconfigurator/ shell in the form of a
command line utility https://github.com/TantorLabs/pg_configurator

The utility accepts 7 or ~ 20 parameters and makes recommendations based on them.

There are not many initial configuration utilities. Of the known ones:

1. PGconfigurator www.cybertec-postgresgl.com , web version pgconfigurator.cybertec.at makes
recommendations based on 13 parameters

2. PG With onfig https://github.com/pgconfig/api, web version www.pgconfig.org gives
recommendations based on 8 parameters

3. PGTune github.com/leOpard/pgtune , created by 2ndQuadrant employee , web version
pgtune.leopard.in.ua gives recommendations based on 7 parameters

During the operation of the DBMS, the Tantor Platform configurator can recommend configuration
parameters. The Platform configurator makes recommendations based on ~25 parameters.

https://tantorlabs.ru/pgconfigurator

Setting up PostgreSQL to work with 1C products :

https://wiki.astralinux.ru/tandocs/nastrojka-postgresql-tantor-dlya-raboty-1s-294394904.html

Next, we consider the parameters whose values are set first. The configurator provides initial values. It
is important to understand the meaning of the parameters and what they affect.

Parameters shared buffers , temp buffers ,
effective cache size

= shared buffers Defaultis 128MB . Can be set to ~ 1/4 of physical
memory size. After changing the value, you need to restart the instance
= effective cache size by default 4 GB
> gives the planner an estimate of the size memory that can
accommodate table blocks
> affects the calculation of the I/O cost, which is part of the overall
cost of the execution plan
> with a small value of the parameter, the cost of input/output (cost)
increases for any blocks - both tables and indexes, and plans will be
selected in which fewer blocks are read
> can be set to 70-80% of the physical memory size

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 129

Parameters shared buffers , temp buffers , effective_ cache_size

When initially setting parameter values, it is assumed that the values of parameters that will not be
mentioned are set to default values. If the parameter values differ from the default values, then check
whether this reduces fault tolerance. For example, it is worth checking whether the checksum
calculation is enabled. If not, then enable it. Check no whether there are long-unused initialized
replication slots :

select slot name , pg current wal lsn ()- restart lsn from pg replication slots

Parameters whose values should be set depending on host parameters and load:

shared_buffers Default is 128MB . Can be set to ~ 1/4 of physical memory size. After changing the
value, you need to restart the instance

effective cache size Default is 4 GB. Gives the scheduler a size estimate. memory that can
accommodate table blocks (the operating system cache and possibly the buffer cache if the blocks are
not duplicated in them) . Can be set to 70-80% of the physical memory size. The parameter does not
affect memory allocation, only the scheduler estimates. The parameter can be set at any level
(sessions, transactions, functions, and others), so the values set may not correspond to the memory
size, but may be used to influence the scheduler's choice of access methods. The cost of the
execution plan consists of two parts: processor and input - output. The parameter affects the
calculation of the cost of input-output. With a small value of this parameter, the cost estimate of the
input-output increases for any blocks: both tables and indexes. Plans will be selected in which fewer
blocks are read .

temp buffer s specifies the size of the local (in the server process memory) buffer cache, which
is used when working with temporary tables. By default, 8 MB. The value can be changed in a session,
but only before the first use of temporary tables, after which the value does not change until the end of
the session. Memory is allocated gradually as needed, not immediately. In addition to the memory for
storing temporary table blocks, an additional 64 bytes are immediately allocated in the server process
memory for each buffer to store buffer descriptors . If the application actively uses temporary tables, the
parameter value can be increased. For 1C applications, it is increased to 256 MB.

Parameters work mem , hash mem multiplier ,
maintenance work mem

= work mem default 4MB
> Together with the hash mem multiplier parameter , itaffects
the memory allocated by each server and parallel process.
> The initial value is set based on an estimate of the number of
sessions executing commands that process large data sets in
memory, i.e. it depends on the type of OLTP (single-row inserts and
selects) and non- OLTP workload.
* maintenance work mem default value 64MB
> Specifies the amount of memory allocated by each process (server,
parallel) participating in the execution of the VACUUM , ANALYZE,
CREATE INDEX , ALTER TABLE ADD FOREIGN KEY commands

> Initial value ~0.5% of physical memory size

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 130

Parameters work mem , hash mem multiplier , maintenance work mem

work mem parameter is 4MB by default. Together with the hash mem multiplier parameter , it
affects the memory allocated by each server and parallel process. For example, when joining tables
using hashing (Hash Join), the amount of memory allocated to service the JOIN will be work mem *
hash mem multiplier * (Workers + 1) .The parameter work mem specifies how much memory a
process can use to execute one step in an execution plan, rather than the memory for the entire
command.

Besides work mem the server process allocates memory for processing single row, but usually table
rows are not very long. Therefore, the initial value is set depending on the estimated number of
sessions in which commands are executed that process large data sets in memory. That is, the value
depends on the type of OLTP (single-row inserts and selections) and non- OLTP workload. If we
assume that shared buffers will be set to ~1/4 of the physical memory size, then ~ 3 /4 will be taken
up by the operating system cache , clean cache pages can be freed quickly, then memory is usually
sufficient.

Rough estimate of memory that the instance will occupy: shared_buffers+2* work_mem * processes .

maintenance work mem default value is 64MB. Specifies the amount of memory allocated by each
process (server, parallel) participating in the execution of the VACUUM , ANALYZE, CREATE INDEX ,
ALTER TABLE ADD FOREIGN KEY commands .

The number of parallel processes is limited by the max parallel maintenance workers
parameter . Index creation and normal (without FULL) vacuum . When vacuuming only the index
processing phase (other phases are not parallelized), one index can be processed by one (rather than
several) parallel processes. Whether parallel processes are used depends on the size of the indexes
and the configuration parameters. Speed and load generated by commands servicing of database
objects ("maintenance") , strongly depends on the allocated memory, in such cases the value is set
before executing the command at the session level, but this is not the initial setting, but the setting
during operation. The initial value at the cluster level depends on the amount of available (clean pages
of the page cache) physical memory, for example, 0.5% of the size of physical memory. It is allocated
immediately at the beginning of the command execution. Combining VACUUM and ANALYZE in a single
VACUUM (ANALYZE) command will not provide any advantage, since in current versions of
PostgreSQL vacuum and analyze are performed independently of each other.

autovacuum work mem parameter

= default -1 (uses maintenance work mem value)

= is allocated immediately by each working process of
the autovacuum

= autovacuum processes do not use parallel processes

= to store tid (tuple identifier), regardless of the value
of the maintenance work mem parameter

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 131

autovacuum work mem parameter

autovacuum work mem parameter defaults to -1 (i.e. equals maintenance work mem). It is
allocated immediately by each autovacuum worker process. The number of autovacuum worker
processes is limited by the autovacuum max workers parameter , they are not considered parallel
processes (i.e. the max worker processes , max parallel maintenance workers parameters
they are not affected and do not exhaust the pool of parallel processes). Autovacuum processes do not
use parallel processes , unlike the VACUUM command (without FULL) , each non-partitioned table with
its indexes is processed by only one autovacuum worker process at a time . Memory is used to store
row identifiers (tid) that have gone beyond the database visibility horizon from table blocks that may
contain outdated row versions, i.e. are not in the visibility map . The amount of memory for such tid
depends not on the table size, but on the frequency of vacuuming (the more often it is performed, the
fewer blocks are likely to be scanned in the current autovacuum cycle), on the number of row updates
or deletions (depends on how the application works with rows), and whether in-page cleaning is
effective. If the autovacuum work mem memory into which tid are written not enough to record all tid
from the table blocks that need to be cleared, then there will be several phases of clearing all indexes in
the table and the efficiency of vacuuming will decrease: the duration will increase, but what is worse,
the load on resources will increase due to repeated scans and clearing of index blocks.

Parameter value can only be set at the cluster level (it cannot be set at the database or table level) ,
to change the value it is enough to reread the configuration.

The main feature is that under storage tid no more than 1GB is used regardless of the parameter values .
Therefore, autovacuum work mem should be less than 1GB. The value to set depends on
autovacuum max workers and free physical memory. For example, if the number of processor cores
is 4 and the memory is 32GB, then autovacuum max workers = 4 (not more than the number of
cores) and autovacuum work mem=1 GB .

In version 17 for storing tid instead of a list, an adaptive radix tree is used, and the number of index
rescans does not depend linearly on autovacuum work mem .

https://pganalyze.com/blog/5mins-postgres-17-faster-vacuum-adaptive-radix-trees

Parameters temp file limit And temp tablespaces

= temp file limit sets the maximum amount of disk
space that a single process can use for temporary
files

= temp tablespaces defines the names of

tablespaces in which files will be created temporary
objects

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 132

Parameters temp file limit And temp tablespaces

temp tablespaces sets the names of the tablespaces in which files will be created temporary tables
and indices on temporary tables ; files created when executing sorts, joining data sets, creating indexes
in SQL commands, if the process runs out of memory (work mem and maintenance work mem). By
default, the tablespace list is empty and the default tablespace of the database the instance process is
running is used.

The lifespan of temporary files is short - until the end of the command, transaction, truncation or
deletion of the temporary table. The operating system uses regular files.

If multiple tablespaces are specified in the temp tablespaces parameter , the process selects a
tablespace randomly each time a temporary object is created. If objects are created within a
transaction, tablespaces are rotated to reduce latency (to obtain the random value). Names of
tablespaces that do not exist or cannot be used (no privileges) are ignored and do not cause an error.

Temporary files can be large in size and may be undesirable in tablespaces with persistent data. Due
to the large volumes of writing to temporary files, the use of magnetic disk storage systems (HDD) may
be preferable to storage arrays based on memory chips (SSD), since the resource of the latter is
determined by the volume of data written.

The size limit for temporary files used by one process can be set using the temp file limit
parameter . By default, there is no limit.

temp file limit specifies the maximum amount of disk space that a single process can use for
temporary files, such as sorting and hashing, or storing a held cursor. If the limit is exceeded, the
command will abort, and any transaction that attempts to exceed the limit will be rolled back.

Limits the size of temporary files that are created implicitly when commands are executed. This option
does not limit the size of temporary table files explicitly created by the CREATE TEMPORARY TABLE
command.

Parameters max slot wall keep size and
transaction timeout

* max slot wall keep size default -1 (no limit) maximum
size of log files that can remain in the pg_wal directory after a
checkpoint for replication slots

= transaction timeout defaultis zero (timeout) disabled) .
Allows you to roll back any transaction or single command
that exceeds a specified time period, not just idle ones.
Protects against database horizon holdup and file bloat

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 133

Parameters max_slot wall keep size And transaction_ timeout

To prevent unlimited space usage, it is worth checking or setting the values of the following
parameters.
max_slot wall keep size default -1 (no limit) . The maximum size of log files that can remain in
the pg wal directory after a checkpoint for replication slots. If the slot is enabled and a client does
not connect, the log files are retained. If no limit is set with this parameter, the log files will fill the entire
file system and the instance will crash . A server process that fails to write data to the log will be
terminated:

LOG: server process (PID 6 543) was terminated by signal 6: Aborted
The instance will then attempt to restart :

LOG: all server processes terminated; reinitializing
To avoid running out of space, it is worth setting a limit. However, a replica that fails to receive logs
and they are erased will have to receive log files from somewhere else or the replica will have to be
deleted and recreated.

transaction timeout default zero, timeout disabled. Allows you to cancel not only an idle
transaction, but also any transaction or single command whose duration exceeds the specified period
of time. The effect of the parameter extends to both explicit transactions (started with the BEGIN
command) and implicitly started transactions corresponding to a single operator. The parameter
appeared in Tantor DBMS version 15.4.

Long-running transactions and single statements hold the database horizon. Holding the database
horizon prevents old row versions from being cleaned up and causes object files to bloat .

Parameters statement timeout + idle session timeout do not protect against transactions
consisting of a series of short commands and short pauses between them (eg a long series of fast
UPDATES in a loop). To protect against long SELECT statements, the parameter can be used
old snapshot threshold . It should not be set on physical replicas. In version 17,
old snapshot threshold and transaction timeout were removed. allows you to replace it.

Parameters max connections And
client_connection_check_interval

= max_connections sets the maximum number of simultaneous
connections to an instance
> default 100
> Changing the value requires restarting the instance, so it is worth
setting it first based on the planned number of sessions.
> reserved connections parameters and
superuser reserved connections
> when increasing the value, first increase it on physical replicas,
otherwise they will stop serving requests
= client connection check interval defaultis zero, checking is
disabled. Allows you to interrupt long queries, the result of which the
client will not be able to receive.

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 134

Parameters max_connections and client connection_check interval

max_connections defaults to 100. The maximum number of simultaneous connections to an
instance. When increasing the value, you must first increase it on the physical replicas, otherwise they
will pause their work . The change in value is transmitted through logs. Changing the value requires
restarting the instance, so it is worth setting in advance based on the planned number of sessions.

reserved connections parameters and superuser reserved connections , butyou can leave
them as is, since the second one has a default value of 3. When the number of simultaneous
connections reaches max connections - superuser reserved connections , The last three
connections can only be made by superusers .

Rough estimates for the number of connections (server processes): maximum TPS on high-
performance hardware is achieved in the region of ~ 500 active (executing commands) sessions, not
idle ones. An instance with default settings can effectively serve up to ~ 4000 sessions. For larger
numbers, instance parameters (e.g. SLRU cache sizes) need to be adjusted.

client connection check interval defaults to zero, disabling checking. Interval between
checks (during SQL command execution) by polling the socket state when no data is being transmitted.
The socket may have been closed by the peer or by the operating system kernel code due to the peer
not responding to keepalive packets . Allows to interrupt long queries, the result of which the client will
not be able to get. Can be set to ~ 30 s or less . If the unit is not set, milliseconds are used.

The number of object locks and advisory locks (which are not used automatically, their use requires
programming) on an instance is determined by the product of max locks per transaction *
max_connections (itisassumed thatmax prepared transactions = 0 and does not need to be
changed) . The product of these parameters determines the amount of shared memory for storing
locks on the instance. If the space in the memory structure is exhausted, then no process on the
instance will be able to obtain an object lock or an advisory lock . The pg dump utility using parallel
processes (the --jobs parameter) sets locks on all objects being unloaded. When unloading a
database - on all database objects . If you want it not to fail, it makes sense to set the
max_ locks per transaction andmax connections values SO that their product is not less than
the number of objects in each cluster database.

Why not just set the max connections parameter to alarge value?

This parameter specifies the total size of the PGPROC structures pointed to by the PROC_HDR
structure. PROC_HDR (an array of pointers) is used to find free PGPROC slots when spawning a
process and to check the status.

The fields in the PGPROC structure are used by all processes for tasks that require coordination and
the fields are queried very frequently. For example, the fields of the PGPROC structure of each process
are checked when forming a snapshot, that is, at each SELECT or the beginning of a transaction. Also
when synchronizing waits/latches. Since PGPROC are read frequently, pointers to PGPROC memory
pages should be kept in hardware caches (TLB). The larger the product of PGPROC *
max_connections , the more likely it is that some other structure will have less space, the access
speed will drop and the work of processes will slow down.

max_connections parameter also affects the size of the overall lock structure. Details are described in
src / backend / storage / lmgr / lock.c

/* Allocate hash table for LOCK structures . This stores per-locked-object
information . */

info.keysize = sizeof (LOCKTAG) ;
info.entrysize = sizeof (LOCK);

max locks per transaction parameter

= The number of object locks and advisory locks that applications can
use is limited on an instance by the product of
max locks per transaction * (max connections +
max prepared transactions)

= by default max prepared transaction =0 and there is no need to
change it if distributed transactions are not used

= formula sets the amount of shared memory to store locks in instance
memory

= pg dump utility using parallel processes (the --jobs option)

sets locks on all unloaded objects
= 300000 locks will require ~ 48MB of shared memory

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 136

max locks per transaction parameter

The number of object locks and advisory locks that applications can use is limited on an instance by
the product of max locks per transaction * (max connections +
max_prepared transactions) .The formulais definedin src /backend/storage/ lmgr /
lock.c

#define NLOCKENTS () mul size (max locks per xact , add size (MaxBackends ,
max prepared xacts))

By default max prepared transactions =0 and does not need to be changed unless distributed
transactions are used.

The formula determines the amount of shared memory to store locks in the instance memory . More
memory is allocated - up to the nearest power of two.

Each lock is allocated ~ 168 bytes of shared memory. If the memory structure is exhausted, no
process in the instance will be able to acquire an object lock or an advisory lock .

pg_dump utility using parallel processes (the --jobs parameter) sets locks on all objects being
unloaded. When unloading a database, on all objects in the database . If you want the unloading to be
possible, it makes sense to set the max locks per transaction and max connections values so
that their product is not less than the number of objects for each database in the cluster.

The parameters are set only when the instance is started, changes to their values are transmitted via
WAL , on physical replicas the values should be no less (better equal) than on the master. That is,
changing these parameters is difficult, since it requires restarting the master and replica instances in
the correct order - first the replicas, then the master. Therefore, the values of these parameters should
be set in advance.

For example, the number of sessions is 1000, objects in the database are 300000, then
max locks per transaction =300 ,the size of the shared memory allocated when starting an
instance to store locks on objects is ~ 48MB. The amount of allocated memory will be larger: ~73MB .
The changes affect memory with the name name = <anonymous> in the query output:

SELECT name , allocated size , pg size pretty (allocated size) FROM
pg_shmem allocations ORDER BY size DESC;

Background Work Processes

* max worker processes (default 8) maximum number of background
processes on an instance
> parameter measurement requires instance restart
> On physical replicas, the parameter value must be no less than on

the master.

* max parallel workers (default 8) maximum number of background
processes to serve commands

* max parallel workers per gather (default2) limitthe degree of
parallelism

* parallel leader participation (default on) the server process
will assist background processes

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 137

Background Work Processes

max_worker_processes parameter (default 8) sets the maximum number of background processes on
an instance. Measuring this parameter requires restarting the instance. On physical replicas, the
parameter value must be at least as large as on the master.

Background processes can be used to perform arbitrary tasks: parallelization of commands, tasks sent
for execution by the application by the pg background extension functions . Such tasks may not
load the central processor cores.

max_parallel workers parameter (default 8) sets the maximum number of background processes
that can be used to parallelize command execution. executed by server processes.

Background processes used to parallelize command execution The tasks performed by server
processes usually require a large load on the processor core, so the number of background processes
correlates with the number of processor cores. Setting more than max worker processes does not
make sense.

max_parallel workers per gather parameter (default 2) sets the maximum number of
background processes that can be used by a server process to service a single Gather node. oOr
Gather Merge from the command execution plan. A value of O disables the use of parallel plans.
Pipelining (a set of processes reads data and passes it on to another set of processes) is not used, so
doubling there is no use of processes as in Oracle Database .

The degree of parallelism of service commands (CREATE INDEX when building a btree index and
VACUUM without FULL) is limited by the max parallel maintenance workers parameter (default
2).

parallel leader participation parameter (defaults to on) specifies that the server process
will perform the same work as background processes, rather than sitting idle while background
processes are running. Optimality depends on the query plan. In general, the higher the degree of
parallelism, the longer the query, and to a lesser extent the amount of data returned by the query, the
less optimal the true value is.

max_worker_processes and max_parallel_workers
parameters

* max _worker processes by default 8. The maximum number of

background workers that can be running on an instance .
> set only at cluster level
* max parallel workers by default 8. Maximum number of parallel

processes (parallel workers)
> Effectively limited by max worker processes , but can be set to a higher
value (for convenience)
> Parallel processes are used to service SQL commands executed by server
processes and to transmit changes in logical replication.
> can be set at the level of the database, role, role in the database
* max parallel maintenance workers default 2. The maximum

number of worker processes that can be started by a single CREATE
INDEX or VACUUM command (without FULL)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 138

Parameters max worker processes And max parallel workers

Parallel processes can significantly speed up the processing of a large number of lines. The optimal
number depends on the number of CPU cores. The default values are small and do not depend on the
number of cores.

max_worker processes by default 8. Maximum number of background (working) processes (
background workers) that can be running on the instance. When increasing the value, increase it on the
physical replicas first, otherwise they will pause their work . The change in the value is transmitted
through the logs. Set only at the cluster level.

max parallel workers default 8. Maximum number of parallel processes (parallel workers) .
Effectively limited by max worker processes , but can be set to a higher value (for convenience).
Parallel processes are used to service SQL commands executed by server processes, as well as to
transfer changes in logical replication (max logical replication workers parameter limited by
the above parameters). Can be set at various levels, such as the database level, the role level, the role
connected to a specific database:

postgres=# alter role postgres set max

max parallel maintenance workers max parallel workers per gather

max parallel workers max stack depth

max_parallel maintenance workers by default 2. The maximum number of worker processes that
can be started by one command CREATE INDEX or VACUUM (without FULL). Autovacuum does not use
worker processes. The number of processes is limited by max worker processes and
max parallel workers

Parameter max parallel workers per gather

* max parallel workers per gather (default 2) sets the maximum
number of worker processes that can used by the server process to
service normal (non- maintenance) commands

= If the number of free processes is less than the calculated one, they
are used and the command is served by a smaller number of processes
(the degree of parallelism decreases).

= By default, the server process participates in data processing (plan
nodes below Gather) on an equal basis with parallel processes, but will
process fewer rows since it services the serial part of the plan and
Gather nodes .

= participation of the server process in processing the parallel part of the
plan can be disabled parallel leader participation = off , but
usually does not result in increased productivity

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 139

Parameter max_parallel workers per gather

Parameter max parallel workers per gather The default is 2. The maximum number of worker
processes that can used by a server process to service normal (non- maintenance) commands .
Parallel processes service those operations that pass data to Gather or Gather nodes Merge command
execution plan. Gather operations are processed by the server process itself. It is not worth setting a
value greater than the number of CPU cores , since parallel processes also load all resources
(processor, memory, disk) as active server processes. The number of processes is calculated
automatically for each SQL command . If the number of free processes is less than the calculated one,
they are used and the command is served by fewer processes (the degree of parallelism is reduced).
By default, the server process participates in data processing (plan nodes below Gather) equally with
parallel processes, but will process fewer rows, since it services the sequential part of the plan and
Gather nodes . Participation of the server process can be disabled parallel leader participation
= off but usually does not result in increased performance of either the instance or the team.

min dynamic shared memory also relates to the work of parallel processes. It is worth considering
if there is a lot of physical memory (hundreds of gigabytes).

Storage system parameters

= random page cost the default value of 4 is only suitable for a
single HDD . For SSD, the value should be close to seq_page_cost
, which is 1 by default. You can set the value to 1.1

= effective io concurrency the default value of 1 is suitable
only for a single HDD . For multiple HDDs (RAID), it is set to the
number of HDD devices across which the recording is distributed
(striping) . For a single SSD on the SATA bus , values from 64
are suitable. For NVMe above 128-512

* maintenance io concurrency default 10 . Used by vacuum
and analysis. For SSDs, the recommended values are the same as
for effective io concurrency

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 140

Storage system parameters

There is a set of parameters that is determined by the storage system (" disk "). These can be HDD,
SSD (NVMe), their RAID device sets . Characteristics for HDD and SSD are significantly different.

random page cost the default value of 4 is only suitable for a single HDD. For SSDs, the value should
be close to seq page cost , which is 1 by default. For SSDs , the speed of accessing blocks
sequentially and randomly does not differ, taking into account the physical characteristics of the SSD (
erase size), which is usually greater than 4K. You can set the value to 1.1

effective io concurrency default value 1 is ok for a single HDD. For rotational disks (HDD)
combined in RAID , you can set the number of disks across which data is distributed (striping) . For a
single SSD on the SATA bus , values 64-200 are suitable . For NVMe 500-1000. The maximum value is
1000. The parameter is taken into account by the scheduler for the Bitmap Heap Scan index access
method. The parameter tells the scheduler how many I/0O operations can be expected to be performed
simultaneously. The parameter also enables or disables (value zero) block prefetching. In addition to
the normal levels for configuration parameters, the parameter can be set in the tablespace properties.

maintenance io concurrency default is 10 . Used by vacuum and analysis. For SSDs, the
recommended values are the same as for effective io concurrency .

These options can be set at the tablespace level:

alter tablespace name set (<TAB>

EFFECTIVE IO CONCURRENCY RANDOM PAGE COST

MAINTENANCE IO CONCURRENCY SEQ PAGE COST

Checkpoint parameters

- parameter full page writes =on (default)

e checkpoint completion target = 0.9 (default)

* checkpoint timeout isrecommended to be set to 20-30
minutes

- max wall size log file size (pg_wal) after which a
checkpoint is called earlier than the checkpoint timeout
parameter specifies
> acceptable for bulk loading or data changes: when blocks

are filled in seconds and are not changed later

= c statistics in columns checkpoints reqgand

checkpoints timed pg stat bgwriter views

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 141

Checkpoint parameters

When setting up checkpoints, you should first check that full page writes = on (the default
value). Installation to off will reduce the volume of log entries and improve performance, but will
increase the likelihood of failure. recover from instance failure. The off value is set temporarily when
you have backups (physical replicas) and the ability to redo changes in the event of an instance failure.

checkpoint timeout by default 5 min . This value is too small and not optimal. It is recommended
to set it to 20-30 minutes.

checkpoint completion target defaults to 0.9, which is optimal.

max wal size by default 1GB. Specifies the approximate size of WAL segments, upon reaching
which a checkpoint " by size " is called . Executing a checkpoint allows you to remove WAL segments
that store changes that occurred before the checkpoint. Usually, checkpoints are executed " by time " -
with the frequency specified by the checkpoint timeout parameter . " By size " checkpoints are
acceptable for bulk loading or data changes: when blocks fill up in seconds and are not changed later .

max_wal size is selected so that checkpoints are most often called by time, and not by size, while
fitting into the size of the file system on which the pg_wal directory is mounted. If pg_wal has enough
free space, you can setmax wal size to alarge value. For SSD ~1/4 (depends on the SSD controller
algorithm) of the SSD size , so that fit into the size of the SSD SLC cache .

If PGDATA and tablespaces are located on slow HDDs , then setting s hared buffers can roughly
give a performance boost of ~ 3.5 times compared to the default value, setting max wal size by~ 15
times. Checkpoints performed more often than once every ~ 15 minutes allow dirty blocks to stay in
memory for less time. Because of this, the same block will be dirty several times and written to disk
several times.

Checkpoint Statistics - checkpoints reg columns and checkpoints timed pg stat bgwriter
views .

https://www.enterprisedb.com/blog/tuning-maxwalsize-postgresq|

Background Recording Process Parameters

b%&}&?ﬁelay default 200ms , reduce to 20-40ms

* bgwriter lru multiplier by default 2. Usually set the value to
more than 4-10.

= bgwriter lru maxpages default 100 buffers, increase to 400-500

* bgwriter flush after default 512kB

= The values are set based on data from the pg stat bgwriter view

select * from pg stat bgwriter \ gx
-[RECORD 1 J--—--=-=---- t-———————
checkpoints timed | 1461
checkpoints req | 90

checkpoint write time | 3805215
checkpoint sync time | 116032
buffers checkpoint | 130655
buffers clean | 250785
maxwritten clean | 1421

buffers backend | 5243535
buffers backend fsync | 0
buffers alloc | 653441

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Background Recording Process Parameters bgwriter

bgwriter delay defaultis 200ms . If there are no dirty buffers left in the shared pool, bgwriter may
be inactive longer than specified. The timer resolution on many systems is 10 ms, so setting
bgwriter delay to a value that is not a multiple of 10 will produce the same result as the next
multiple of 10. The default value is high, which is suitable for an unloaded cluster. Under load, the
process will work inefficiently and the checkpoint er will clean up the buffers. and server
processes. A small value can load one of the processor cores. If there are many cores and the instance
is loaded, it makes sense to set it to a small value : 20 ms .

bgwriter lru multiplier by default2. Usually the value is setto 4-7 .

bgwriter lru maxpages default 100 buffers . Per cycle bgwriter records no more than was
recorded in the previous cycle, multiplied by bgwriter lru multiplier , but not more than
bgwriter lru maxpages . Usually increased to 400-500.

bgwriter flush after Defaultis 512kB . The value range is from O (disables flush) to 2MB.
The values are set based on data from the pg stat bgwriter view :

select * from pg stat bgwriter \ gx

-[RECORD 1]J----—--- e et T

checkpoints timed | 1461

checkpoints reg | 90

checkpoint write time | 3805215

checkpoint sync time | 116032

buffers checkpoint | 130655

buffers clean | 250785

maxwritten clean | 1421

buffers backend | 5243535

buffers backend fsync | 0

buffers alloc | 653441

I/O statistics for server and background processes are available in the pg stat io view .

Practice

Part 1. Object locks

Part 2. Monitoring the server process memory

Part 3. Temporary tables and files

Part 4. Impact of configuration parameters on shared memory
= Part 5. max connections parameter and performance
Part 6. Buffer Cache Size and Buffer Release

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 143

Practice

Practical examples allow us to compare the data on allocated memory provided by operating system
utilities and system directory functions.

You will see:

how memory is allocated for temporary tables and at what point are temporary table files created ;

how changes in configuration parameters affect the actual sizes of memory structures ;

how much table deletion slows down when the buffer cache is increased.

Qntor

6-1

Storage structures

Tables

= an object in which data is stored

= several types: regular tables (heap tables , rows are stored
in an unordered manner) , unlogged , temporary, sectioned

- Extensions can create new ways to store data and access it

= number and order of columns are set when creating a table

= After creating a table, you can add and remove columns.
When adding a column, it is added last - after all existing
columns

= you can change the column type

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 145

Tables

Application data is stored in tables. The DBMS has regular tables (heap tables , rows are stored in an
unordered manner) , unlogged , temporary, partitioned. Extensions can create new ways of storing
data and methods of accessing it. Tantor SE DBMS has the pg columnar (pgcolumnar) extension.

Number and order of columns are specified when the table is created. Each column has a name. After
the table is created, you can use the ALTER TABLE command to add and remove columns. When you
add a column, it is added after all existing columns.

NULL values by default or are given the values specified by the DEFAULT option. When adding a
column, new row versions will not be generated if DEFAULT is set to a static value. If the value uses a
volatile function, such as now () , then when adding a column, all rows in the table will be updated,
which is slow. In this case, it may be more optimal to first add the column without specifying DEFAULT ,
then update the rows with UPDATE commands setting the value for the added column, then set the
DEFAULT value with the ALTER TABLE command table ALTER COLUMN column SET DEFAULT value ;

Dropping a column deletes the values in the fields of each row and the integrity constraints that
include the dropped column. If the integrity constraint being dropped is referenced by a FOREIGN KEY ,
you can drop it in advance or use the CASCADE option.

You can also change the column type using the ALTER TABLE command table ALTER COLUMN
column TYPE type(dimension);

You can change the type if all existing (non- NULL) values in the rows can be implicitly cast to the
new type or dimension. If there is no implicit cast and you do not want to create one or set it as the
default data type cast, you can specify the USING option and set how to get new values from existing
ones.

The DEFAULT values (if defined) and integrity constraints that the column is a part of. It is better to
remove integrity constraints before modifying the column type and then add the constraints.

To view the contents of a block, the functions of the standard pageinpect extension are used .

https://docs.tantorlabs.ru/tdb/ru/15_6/se/ddl-alter.html

Service columns

= xmin - transaction number (xid) that created the row version

= xmax - transaction number (xid) that deleted or attempted (
transaction was not committed for any reason: rollback was
called , server process was interrupted) to delete a row or zero

= ctid address of the physical location of the row

= tableoid - oid table that physically contains the row. The values
are meaningful for partitioned and inherited tables

< cmin is the zero-based sequence number of the command

within the transaction that created the row version
< cmax is the zero-based sequence number of the command

within the transaction that deleted or attempted to delete the row

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 146

Service columns

When accessing table rows in SQL commands, you can use pseudocolumn names (service, system ,
virtual). Their set depends on the table type. For regular (heap) tables, the following pseudocolumns
are available :

ctid is the address of the physical location of the row. Using ctid , the scheduler can access a
page (block of the primary layer file) of the table without a full scan of all pages. The ctid will change
if the row is physically moved to a different block.

tableoid - oid table that physically contains the row. The values are meaningful for partitioned and
inherited tables . A quick way to find out oid tables, as it corresponds to pg class.oid .

xmin - the transaction number (xid) that created the row version.

xmax - transaction number (xid) that deleted or attempted (the transaction was not committed for
any reason: rollback was called , the server process was interrupted) to delete the row.

cmin is the zero-based sequence number of the command within the transaction that created the
row version. Has no application.

cmax is the sequence number of the command within the transaction, starting from zero, that
deletes or attempted to delete the row. To support " crooked " code, when the same row is updated
several times in one transaction.

x min , ¢ min , x max , c max are stored in three physical fields of the row header. x min and
x max are stored in separate fields. ¢ min , ¢ max , x vac (VACUUM FULL was used before
PostgreSQL version 9) in one physical field. cmin and ¢ max are only of interest during the lifecycle of
a transaction for insertion (cmin) and deletion (¢ max). ctid calculated based on the address of the
row. Physically, the row version stores t ctid stores the address of the next (created as a result of
UPDATE) version of the row. Moreover, this is not a " chain " , the connection can be lost, since the
vacuum can delete a newer version of the row earlier than the old one (the block processed earlier) and
the old version of the row will refer to the missing version. If the version is the latest, then t ctid
stores the address of this version. For partitioned tables, if an UPDATE resulted in the new version
moving to a different partition (the value of a column included in the partition key changed), a special
value is set. Also During an INSERT , a "speculative insertion token™ may be temporarily set instead of
the row version address.

https://docs.tantorlabs.ru/tdb/ru/15_6/se/ddl-system-columns.html

pageinspect extension

= standard extension, does not require loading the library
= checksum:
> calculated and stored at the time of writing a dirty block to the file
> checked when reading a block from a file into the buffer cache buffer
> while the block is in the buffer the checksum field in the block header
does not change and is not checked

create extension pageinspect ;
drop table if exists t;
create table t(s text);
insert into t values ('a');
select * from page header (get raw page ('t', 0));

1sn | checksum|flags|lower|upper|special|pagesize|version|prune xid
—————————— B et et e et
6/B6EC12CO| O | O | 28 | 8144| 8176 | 8192 | 5 | O
vacuum full t;
select * from page header (get raw page ('t', 0));

1sn | checksum|flags|lower|upper|special|pagesize|version|prune xid
—————————— Bt et e e e ittt b e e e e
6/B6ED5458| -11261 | 0 | 28 | 8144| 8176 | 8192 | 5 | 0

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

pageinspect extension

Standard extension. Can be installed into the production database with the command:
create extension pageinspect ;
drop table if exists t;
create table t(s text);
insert into t wvalues ('a');
select * from page_header (get raw page ('t', 0));

lsn | checksum |flags|lower|upper|special|pagesize|version|prune xid
—————————— e e e et st
6/B6EC12CO| O | 0 | 28 | 8144| 8176 | 8192 | 5 | 0
Why is the checksum zero ?
Checksum:
1) is calculated and saved at the moment of writing a dirty block to the file
2) is checked when reading a block from a file into the buffer cache buffer
3) while the block is in the buffer, the checksum field in the block header does not change and is not
checked
When creating a table, the block in the file is empty: it consists of zero bytes, including a zero
checksum. While the block is in the buffer, the checksum in it remains the same as it was at the time of
reading from the file. In memory, if the buffer is not cleared and not read from the file again, the
checksum is the same - at the time of reading from the file into the buffer.
After restarting the instance or a complete vacuum, the checksum field will be updated:
vacuum full t;
select * from page header (get raw page ('t', 0));

1sn | checksum|flags|lower|upper|special|pagesize|version|prune xid
—————— fomm t————- t————- t————- fom——— - fomm fom— - R ——
6/B6ED5458| -11261 | 0 | 28 | 8144 8176 | 8192 | 5 | 0
When a block changes while it is in the buffer cache , the value in the checksum field will not be

updated :
delete from t;
Isn | checksum|flags|lower |upper|special|pagesize|version|prune xid

—————————— e
6/B6ED7008| -11261 | O | 28 | 8144| 8176 | 8192 | 5 | 1026

Padding and aligning

- alignment (align) - the field length is a multiple of the number of
bytes

= specified in the pg_type.typalign columns and pg_attribute.attalign

= The following alignment values are possible:

s (short) 2 bytes

I (int) 4 bytes

d (double) 8 bytes
> ¢ (char) unaligned (byte by byte)

= padding - adding unused space to make alignment

\%

A%

\%

smallin . 3 1
dd serial 4 i \ .
I (bigserial 8 (d)
2(s))
\ J

T

multiple of 4
\ \ serial 4 (i smallint

bigserial 8 (d)) 2(s)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 148

Padding and aligning

In the pg type.typalign columns And pg attribute.attalign the alignment is specified when
storing a field for a data type in normal (heap) tables. All types:

select distinct typname , typalign from pg type where typname not like 'pg %' and typname
not like '_%' order by typname ;

All types used in columns:

select distinct atttypid :: regtype , attalign from pg attribute order by attalign ;
Alignment can be:

c (char), 1 byte ,i.e.withoutalignment

s (short), 2 bytes

i (int), 4 bytes

d (double) 8 bytes

x for 64 -bit xid type in Tantor SE and SE1C.

Padding - adding unused space to perform alignment .

For example, two tables are created with different column orders:

create table tl(cl varchar (1), c2 bigserial , c3 date, c4 timestamp);

create table t2(cl bigserial , c2 timestamp, c3 date, c4 varchar (1))

Rows with the same values are inserted:

insert into tl values('A', 1, now(), current timestamp);

insert into t2 values(l, current timestamp , now(), 'A');

Strings will be stored as a sequence of bytes in HEX :

create extension pageinspect ;

select t _data , 1lp len , t hoff from heap page items (get raw page ('tl', 'main',0));

t data | 1p _len|t hoff
___ +______+______

0541 000000000000 0100000000000000 36230000 00000000 8a31el7666c40200 56 24
select t data , 1lp len , t hoff from heap page items (get raw page ('t 2 ', 'main',0));

t data | lp len|t hoff
___ +______+______
0100000000000000 c93ael7666c40200 36230000 0541 46 24
The difference is 8 bytes per row version. Length of the string version 56 And 46 bytes, row version

header size 24 bytes for Tantor SE. For PostgreSQL, the row version length is 64 and 54 bytes , the
row version header size is 32 bytes (stored in one byte t hoff , the value is a multiple of 8) .
https://docs.tantorlabs.ru/tdb/ru/16_4/se/storage-page-layout.html

Alighment

- " c " and variable types up to 127 bytes long are not aligned:

- " i | Numeric

= " 1" - the beginning of the field can only be located in 1,5,9,13...

\Wi JaYall

" : \x01 i 000

[ad

|| i \x01 00000000000000 010000000 d
t
=nm
i i i .
t t t 0L L d

" i 0100000000000000 a

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 149

Alignment

Fields of variable length types (text, numeric) up to 127 bytes long are not aligned , from 127 bytes
are aligned by pg_type.typalign (if the value is " i ™, then by 4 bytes) .
types in the typlen column pg_type tables value -1:

select typname , typlen , typalign from pg type where typname like '% bool %';
typename | typen | typealign

_________ +________+__________

bool | 1 | ¢

_bool | -1 | 1

(2 rows)

Example for 2 pictures on slide:
create table t (a boolean , b int4d);

insert into t values (true, 1);

select t data , 1lp_len , t hoff from heap page items (get raw page ('t','main',0));
t data | 1lp len | t hoff

____________________ +________+________

\x 01 000000 01000000 | 32 | 24

Example for 6 pictures on slide:

drop table if exists t;

create table t(a int4 , b int8);

insert into t values (1, 1);

select t data , 1lp_len , t hoff from heap page items (get raw page ('t','main',0));
t data | 1lp len | t hoff

__________________________ +________+________

\x 01 00000000000000 0100000000000000 | 40 | 24

Example for numeric:

drop table if exists t;

create table t(a numeric , b numeric , c int4d);

insert into t values (1, 1, 1);

select t data , 1lp len , t hoff from heap page items (get raw page ('t','main',0));
t data | 1lp len | t hoff

__________________________ f——_—_———— e ———————

\x 000800100 0b008001000 000 01000000 | 40 | 24

(1 row)

The value 1 in the numeric fields takes up 5 bytes, but it is aligned to 1 byte, so there is no padding
between columns a and b . The int4 field is located from 13 to 16 bytes. The padding (unused bytes) is
marked in red.

cache line

Update Every K-th Int

K=16

= alignment significantly speeds up data gu
processing, so it is used whenever possible %
where it does not lead to a significant
Increase in storage space

Time {ms)
g

= up to 16*8=64 bytes (K=16) the time to 0
access memory iS the same S 1 2 a4 8 15 32 64 128 256 512 1024
= time to process data if it fits in the cache o

Time per element (ns)

1kB 16k8 256kB 4MB 64MB 1GB

Array size

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 150

cache line

Alignment significantly speeds up data processing, so it is used whenever possible where it does not
lead to a significant increase in storage space.

Example of two cycles:

int [] arr = new int [64 * 1024 * 1024];

for(int 1 = 0; i < arr.length ; i += 1) arr [1] *= 3;

for(int 1i 0; i < arr.length ; i += 16) arr [i] *= 3;

In the array of integers of 4 bytes, all numbers are changed in the first cycle (arithmetic operation of
multiplying by 3). In the second cycle, every sixteenth number is changed. The execution time of the
cycles will be the same: the second cycle is faster by 2.5%. Most of the time is spent on accessing
memory. Just as files on HDD and SDD are read in blocks (512 bytes or 4K or other size), the processor
also works with the main (not cache) physical memory in pieces called cache lines . Modern
processors have a cache line size (LineSize) of 64 bytes. How the processor physically reads bytes or
sets of bytes does not matter, what is important is that the time to read from the main memory from 1 to
64 bytes into the cache and the subsequent writing to the main memory from the cache is the same.
The time to process from 1 to 64 bytes in the cache is ~ 60 times faster. In cycles, 16 numbers of type
int (4 bytes = 32 bits) occupy 64 bytes - cache line.

The graph on the slide shows the time it takes to process an array depending on the step of reading
int numbers .

If you complicate the cycle and repeatedly return to processing values, then the speed of processing

values stored in caches will be higher up to the cache boundaries , and then fall. Example:
int steps = 64 * 1024 * 1024;
int lengthMod = arr.length - 1;
for(int i = 0; i < steps; 1 ++) arr [(1 * 16) % lengthMod]++;

The graph on the slide shows an example for the core cache sizes L1 = 32 KB, L2 = 4 MB.

PostgreSQL shared memory structures are 64-byte aligned. Each core can have its own cache. If the
same memory addresses are loaded into the mapped caches of the cores, then when the value in the
cache changes , in addition to writing the entire cache line to main memory, invalidated cache line (64
bytes) in the cache of all other cores and if the cores simultaneously work with bytes within 64 bytes,
the slowdown is ~ 15 times.

https://igoro.com/archive/gallery-of-processor-cache-effects/

Cache line contention (Andres Freund): https://m.youtube.com/watch?v=dLrqQOCRFOU

Data block structure

lower upper
block header 24 bytes
(1sn , checksum , lower , 4 4 4 select * from page header (
upper ...) / get_raw page ('t',6 'main',0));
-[RECORD 1]---—--—--
o wne) size is a multiple of 8 bytes lsn | 0/110DCF10
gmhmg . 1 checksum | 0
0 off (9° title data lines flags | 0
= 21 bytes lp len lower | 928
TITIS : S
21 & it title data lines 16
hutos Lines 21 lp len pagesize | 8192
L . N\ M - I - J version | 5
size is a multiple of 8 b\es the size of any row and row header is a prune xid | 0
, 32... bytes ultiple of 8 multiple of 8 bytes special -

there is no data in the row (all fields are
NI

bitmap (1=NULL) one bit per column

select * from heap page items (get raw page ('t',6 'main',0)) limit 1;

lp| 1p off |lp flags| lp len |t xmin|t xmax|t field3|t ctid|t infomask2|t infomask]| | £ bits | t _oid
——fe— fomm fom——— Fom——— Fo—m fomm Fom——— fom e tomm Fom——— o F————
18 | 776 | 1| 38 | 43339 0 | 369 | (0, 18)| 6 | 2307 | | 01111100 |

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Data block structure

The structure of the heap table block is given . The block size is 8Kb. At the beginning of the block
there is a service structure of a fixed size of 24 bytes. They contain: LSN indicating the beginning of
the journal record following the journal record of which the block was changed. This LSN is needed so
that the block is not sent for writing if the journal record has not been written to disk (implementations
write ahead log rules) . Also used in log recovery.

Tantor SE uses a 64-bit (8 bytes) transaction counter and at the end of a block of regular tables there
is a " special space " of 16 bytes , TOAST has 8 bytes . PostgreSQL does not have a special area for
tables, index blocks have one.

prune xid - default 0. xmax oldest unpurged row. It is used as a hint (it's like a hint-bit , a non-WAL-
logged hint field that helps determine whether pruning will be useful. It is currently unused in index
pages) to the process that will look for a place in the block to try to prune the block (First check
whether there's any chance there's something to prune) . It is requested in the heap_page_prune_opt
(..) function which is called by the heapgetpage (..) function, which on occasion (opt - opportunity)
may prune the block.

After the fixed area there are pointers (line pointers) to the beginning of records (lines) in this block
(itemid.h). For each line, 4 bytes are used for the pointer . Why so much ? The pointer contains the
offset (" off set") in bytes to the beginning of the line (| p_off 15 bits, line pointer off set), 2 bits (|
p_flags) , 15 bits lengths per line (| p len) . Two bits indicate four possible states of the pointer: 1 -
points to a string, free, and two more states that implement HOT (heap only tuple) optimizations : dead
and redirect.

pd_flags) in the block header . Bits (flags) can be used in the process code as hints, or they may not
be used :

PD HAS FREE LINES 0x0001 /* there may be Unused pointers in the header */

PD PAGE FULL 0x0002 /*there may not be room for new lines */

PD ALL VISIBLE 0x0004 /* all rows are visible to all transactions, no dead ones */

PD VALID FLAG BITS 0x0007 /* used as checksum for these bits */

Although the address (offset to) the start of a row for table blocks is a multiple of 8 bytes, the offset
stores the address with byte precision.

select * from page header (get raw page ('t','main',0));

l1sn | checksum|flags | lower | upper | special | pagesize | version | prune xid
——— e +-———- fo—— - to—m———— Fommm - Fommm - Fommm - Fomm -

0/50] O] O 928 | 944 | 8176 | 8192] 5 | O

The request does not require specifying the layer name ‘main" :

select * from page header (get raw page ('t', 0));

l1sn | checksum| flags |lower | upper | special|pagesize|version|prune xid
———————————— s St T At T
6/COD 8 | O | 2 | 40 | 1264 | 8176 | 8192 | 5 | 966
In this example, the PD_PAGE FULL flag is set (flags =2) , meaning that UPDATE did not

find space in the block and was forced to insert a new version of the row into another block. When
accessing a block with such a flag (even SELECT), the process will try to clean up space in the block
(perform a HOT cleanup) . The block also has the hint prune xid =966 .
select ctid ,* from heap page ('t',0);
ctid | 1lp off | ctid | state | xmin | xmax | hhu | hot | t ctid | multi

——————— e et e e et T bt SR P
(0,1) | 6448 | (0,1) | normal | 963c | 966c | t | | (0.3) | £

(0,2) | 4720 | (0,2) | normal | 964c | 967c | t | | (0.4) | £

(0.3) | 2992 | (0.3) | normal | 966¢c | 969 | | t | (1,1) | £

(0.4) | 1264 | (0.4) | normal | 967c | 968c | | t | (0.4) | £

select ctid from t;

ctid

(1,1)

The process that executed the previous select cleared the block:
ctid | 1lp off | ctid | state | xmin | xmax | hhu | hot | t ctid | multi

——————— it e e et et T
(0,1) |1 0 (0,1) | dead | | | | | | £
(0,2) | 0| (0,2) | dead | | | | | | £
Isn | checksum|flags|lower|upper|special|pagesize | version | prune xid
- - fomm - o= o o= to—m———— Fomm— - Fomm Fommm -

6/DE30| O| O] 3218176 | 8176 | 8192 | 5 | 966
PD PAGE FULL flag was cleared, but prune_xid remained.
vacuum t;
Vacuum cleared line references in the block header and set the PD HAS FREE LINES and
PD ALL VISIBLE flags (flag=5):
ctid | 1lp off | ctid | state | xmin | xmax | hhu | hot | t ctid | multi

——————— o
(0,1) I 0 | (0,1) | vnused | | | | | | £

Isn | checksum|flags|lower|upper | special | pagesize | version | prune xid
—————— e s st e e e ettt e

6/0648| 0] 5 | 28] 8176] 8176 | 8192 | 5 | O

The row header is 24, 32, ... bytes in size and is a multiple of 8 bytes. It stores t_hoff - offset to the
beginning of the row data. At the end of the header there will be a bitmap t_bits (size is a multiple of a
byte), if at least one field of the row is NULL . One bit - one column, zero - NULL , 1 - the field is not
empty . The presence of the map (the presence of NULL in any field) is indicated by one of the bits
t_infomask .

select * from heap page items (get raw page ('t','main',0)) limit 1;
lp| 1p off |lp flags| lp len |t xmin|t xmax|t field3|t ctid|t infomask2|t infomask| | t bits | t oid
——t————— tmm————— fo———— to———— to———— Fom————— Fo———— fom Fom fo———— B t————

18 | 776 | 1] 38 | 43339] 0 | 369 [(0, 18)| 6 | 2307 | | 01111100 |

Number of rows in a block

= no more than 291 for lines of length zero (all fields are empty)

= the maximum number of non-empty lines that can fit in a block is: 226,
185, 156 (157), 135 (136), 1 19 (120) , 107, 97, 88, 81, 75, 70, 65, ... since
the line length is a multiple of 8 bytes

= 4 bytes are added to the block header for each line

= at the beginning of the block 24 bytes are occupied by service data

= in Tantor SE, SEIC at the end of the table block 16 bytes are used for
service data

= if there are no more than 8 columns in the table, then the row header is
24 bytes

= row header is a multiple of 8 bytes and can be 24, 32,... bytes in size

= in the row header, space is allocated for a bitmap of empty values in
the row fields if the columns can contain NULL

= empty fields do not take up space in the data area

= NULLs do not take up space in the data area, using NULLs is efficient in
terms of storage compactness

fahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 153

Number of rows in a block

To visualize the distribution of space in a table page, let's look at an example. A table with two
columns, uuid and boolean . We insert rows by filling uuid with the uuid generate vi1() value, and
boolean with the true value . These data types have a possible storage method of PLAIN . FILLFACTOR
for PostgreSQL tables is 100% by default , for btree indexes 90 %. For such a table, 156 rows will fitin a
Tantor SE page . In a postgresql page from Astralinux 1.8.1 136 lines will fit . If boolean leave empty (
null) , the page will fit 185 and 157 lines. If both fields are NULL, then 291 and 226 rows.

The page header is 648 bytes and 568 bytes (page header.lower). The block header is 24 bytes
plus 4 bytes for each row in the block.

In the Tantor SE block, 16 bytes are used at the end of the block to store service data. In postgresq|
the data area reaches the end of the block, there is no special area at the end of the blocks in the table.

The length of the line in Tantor SE 4 is 1 byte (Ip_len) , but the line takes up 48 bytes (Ip_off) ,
because: all fields are aligned ; header is 8 bytes ; header + data is 8 bytes .

At postgresql Astralinux the total length of the string is 56 bytes and Ip_len = 49. Tantor SE Row
Header - 24 bytes and postgresql Astralinux - 32 bytes (stores t_infomaskpgac , t hasmac , t_maclabel

).

Example of a table with columns:

create table tl1 (cl varchar (1), c2 bigserial , c3 date, c4 timestamp);
create table t2 (cl bigserial , c2 timestamp , c¢c3 date , c4 varchar (1));

Number of lines in block: Tantor SE 1 35 (non-optimal column order) and 15 6 , in postgresqgl Astralinux
: 120 and 136. Rearranging columns reduced overhead by ~10%.

The block header size in Tantor SE is 564 bytes and 648 byte, in postgresqgl Astralinux : 504 and 568 .

Storage overhead is ~13% , of which block header is ~7% , row headers are ~6%.

The maximum number of rows in an 8-kilobyte PostgreSQL block is 291. However, completely empty
rows (all NULL fields) almost never occur. Therefore, you can focus on the fact that the maximum
number of non-empty lines that can fit into a block is: 226 , then 185, then 156 (PostgreSQL has 1 more
line due to 16 bytes at the end of the block in Tantor SE) , then 135, then 120. For example, for tables:

t 1 (c bigserial); t 2 (c serial); t 3 (c smallint); the number of lines that fit into
the block will be the same: 226. Why ? The row header is 24 bytes, the row is aligned to 8 bytes and
the data area can be 0,8,16,24... bytes.

£chtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 154
2 O (LIl L1l wilill DLl 1LliL 11l 1LU©o UL LIIT MLUCLKN Dls4cT) LUl LIVl cliTatllup)

8 | 984 (size exceeds 10% of block size)
7 | 1136
6 | 1328
5 | 1600
4 | 2008
3 | 2688
2 | 4048
| 8120

(60 rows)

By default FILLFACTOR=100, but HOT cleanup is triggered if there is less than 10% free space in the
block. Is 90% a lot or a little ? If the block fits more than 9 lines, then the freed space is enough to fit
the line. The exact statistics of cases when during UPDATE no space was found in the block and the
new version of the row was inserted into another block is shown by
pg stat all tables.n tup newpage upd

the most optimal full row size is a multiple of 64 bytes (cache line size) . Number of rows and row
data area size:

SELECT distinct trunc (2038/(l6é*generate_series+4)) rows, max(generate_series
*64-24) size FROM generate series (1, 64) group by rows order by 1 desc ;

rows | size
_____ +_____
101 | 40

56 | 104
39 | 168
29 | 232
24 | 296
20 | 360
17 | 424
15 | 488
13 | 552

If there are no more than 8 columns in the table, the row header is 24 bytes. If there are more than 8
columns, the row header is 32 bytes. Starting with 73 columns, the row header will be 40 bytes.

The order of columns in a table

= the first columns should be d (aligned by 8 byte) , then i,
then s (smallint), then c (boolean , char, uuid)

= variable length types (text, bytea, numeric and many others)
have i alignment or d . However, fields of these types will only
be aligned if they store more than 126 bytes.

= for variable length types in the typlen column of the pg_type
table negative number: -1 denotes varlena type

= columns with a large number of NULL values should be
placed after fixed-width fields and before varlena (if they
will store more than 126 bytes)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

The order of columns in a table

The first columns should be d (aligned by 8 byte) , then i, then s (smallint), then c (boolean , char,
uuid) . Is it possible to put i first , and then d? It is possible. For example, " iid " - there will be no loss of
space. "id" - there will be a loss of 4 bytes of space, since d must be located starting from the 8th byte.

Variable length types (text, bytea, numeric and many others) have i alignment or d . However, fields of
such types will only be aligned if they store more than 126 bytes . For variable-length types, in the typlen
column of the pg_type table negative number: -1 denotes the type varlena . There is also a value " -2 " (
cstring and unknown) are pseudotypes (pg type.typtype ='p'). Pseudotypes cannot be used as
a column data type, they are used as parameters of routines to pass values.

Columns with a large number of NULL values should be placed last . NULL is passed directly from the
bitmap preceding the first field, so the location of the field with the NULL value does not affect the cost
of access, but the dimensionality of the data type of these columns affects both the alignment and
access to the data of the columns that follow them.

create table tl (cl serial, c2 timestamp);

create table t2(c2 timestamp, cl serial);

insert into tl (c2) values(current timestamp);

insert into t2 (c2) values(current timestamp);

select t_data , 1lp len , t hoff from heap page items (get_raw page ('tl',6 'main',0))
union

select t_data , 1lp len , t_hoff from heap page items (get raw page ('t2',6 'main’',0));

t data | 1lp len | t hoff

__________________________ +________+________

\x0100000000000000b51££02b6£c40200 | 40 | 24

\x8523£02b6£c4020001000000 | 36 | 24

On Ip_len cannot be oriented, since in addition to padding , the total size of the line located in the block
is aligned . This means that if Ip_len is not divisible by 8, then 1-7 bytes (with a value of zero) will be
added to the end of the string to make the size a multiple of 8 bytes. Ip_len stored in the block header
and used to determine the end of the last field.

The numbers 36 and 40 are multiples of 8, so in this example there will be a saving of 4 bytes per row.

Column Order and Performance

= The columns included in the PRIMARY KEY should be listed first as they
do not have null values and are the most frequently used.

= next are fields with fixed-width data types that do not have empty
values

= Next are columns with fixed-width data types that rarely contain null
values

= columns that are less common in queries should come after columns
that are more common

= columns with larger fields are best placed last

= take into account the algorithm for removing fields in TOAST

= if the table has no more than 8 columns, then the row header is 24 bytes

= If there are more than 8 columns, then NULL in any of the row fields
increases the row header by 8 bytes, but on the other hand the data
area decreases by the size of the field.

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 156

Column Order and Performance

Empty fields occupy zero bytes in the data area. If the table has a large number of columns and NULL
appears in at least one field, the t_bits bitmap can jump (by 8 bytes) to increase the row header from 24
to 32 bytes. In the bitmap, 1 column is 1 bit, its size is a multiple of a byte.

The row header without a bitmap takes 21 bytes. Physically, the header is aligned to 24, 32, 40...
bytes. To prevent the header from growing from 24 to 32 bytes, the bitmap must fit into 3 bytes, i.e. if
the table has no more than 8 columns, the header is 24 bytes.

When the row size exceeds ~ 200 O bytes (after compression of variable width fields, which strategy
allows To TOAST , variable-width fields are pushed out, starting with the longest in the row, until the
row fits in ~ 2,000 bytes . If there are no more push-out fields left, the row will exceed this limit. Fixed-
width fields cannot be stored in TOAST and cannot be compressed .

Example: a table with 25 int4 columns . If all fields are non-empty, the row header is 24 bytes. If at
least one field is empty, the row header is bytes. In both cases, the block will fit 61 rows because the
length of the row without NULL is 24+25*4= 124 padded with 4 bytes to be a multiple of 8. Length of a
string with NULL: 32 + 24 *4 = 128 (one column less, since NULL takes up zero bytes in the data area)

lp | 1p off | 1p len | t ctid | t hoff
61 | 368 | 124 | (0, 61) | 24
61 | 368 | 128 | (0, 61) |

If the first column is made int8 , and the second or subsequent column is NULL, then t_hoff = 32 ,

Ip_len = 132 the block will fit 58 lines, 5% less:
58 | 288 | 132 | (0, 58) | 32

Most of the columns can be in TOAST and the difference will be bigger.

The total optimization effect from bad order to better order (no variable width columns before fixed
width columns) if the row fits in the block is ~ 27%.

The reason for using aligning is to improve performance when processing a set of bytes, otherwise
padding would not be used.

https://gitlab.com/dhyannataraj/tuple-internals-presentation

Practice

= Part 1. Free space map

= Part 2. Changing the order of columns

- Part 3. Table Block Contents

= Part 4. Aligning fields in table rows

= Part 5. Aligning Rows in Table Blocks

= Part 6. Storing empty (NULL) values in table rows
= Part 7. Number of rows in a table block

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Practice

In practice you will see:

how does the order of columns affect the space occupied by a table ;

that the presence of an index slows down insertion into a table by an order of magnitude ;
how much the row header is increased if any field in the row contains an empty value ;
how to view the contents of table blocks .

NLor

v

Indexes

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 158

AN T N
€Y

List of access
: methods
String Access Methods T T g
__________ +_______
bloom | Index
brin | Index
= two types of " methods " (ways) of accessing e
table rows: tabular and index gin | dndex
a gils ndex
= Access methods can be added by extensions: hash | index
> create extension pg columnar ; h$g¥t?bﬁwﬂ
> create extension bloom; oo

= Table access methods define how data is stored in tables and
typically read all rows.

= Index methods typically read a portion of the table blocks.

= For index methods (methods) you need to create an auxiliary object
called an index

= Indexes are created on one or columns of a table :
create table t (id int8, d date, s text);

create index t_idx on t using btree (int8 ops, date_ops)
create index t_idxl on t using btree (s text ops);

create index if not exists t _idx2 on t (,)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

String Access Methods

There are two types of " methods " (ways) to access table rows: tabular and index.
List of available access methods: \ da or request:
SELECT * FROM pg_am ;

oid | amname | amhandler | amtype
————————— B it e et
2 | heap | heap tableam handler | t
403 | btree | bthandler | i
405 | hash | hashhandler | i
783 | gist | gisthandler | 1
2742 | gin | ginhandler | i
4000 | spgist | spghandler | i
3580 | brin | brinhandler | i

Access methods can be added by extensions:

create extension pg columnar ;

create extension bloom;

Extensions will be added to the pg_am table access methods:

2425358 | columnar | columnar.columnar handler | t
2425512 | bloom | blhandler | i

Table access methods define how data is stored in tables. In order for the planner to use an index
access method, you must create a helper object called an index . " Index type " and " index access
method " are synonyms .

Indexes are created on one or more columns of a table:

create table t(id int8, s text);

create index t_idx on t using btree (id int8 ops) include (s) with (fillfactor
= 90, deduplicate_items = off);

When creating an index, you specify the table name and the column or columns (a " composite index
") whose values will be indexed. Option INCLUDE allows you to store column values in the index
structure, expressions cannot be used. Operator classes are not required for such column data types.
The purpose of including columns is to force the planner to use Index Only Scan.

You can create multiple identical indexes, but with different names.

The operator class name is usually not specified because there is a default class for the column type.
The default index type is btree .

https://docs.tantorlabs.ru/tdb/ru/16_4/se/sql-createindex.html

Operator class for index

= When creating an index, you can specify an operator class separately
for each index column

create table t(id int8 , s text);
create index t_idx on t using btree (id int8 ops , s text pattern ops) ;

= If you do not specify an operator class, the default class for the column
type is used :

\ dA c + btree integer

List of operator classes

AM | Input type | Storage type | Operator class | Default? | Operator family | Owner
——————— f————————
btree | integer | | int4 ops | yes | integer ops | postgres

= list of functions , used by families of operators :

\ dA p + btree integer ops
List of support functions of operator families

AM | Operator family | Registered left type | Registered right type | Number | Function

——————— BT et et et ettt e T L E L T et
btree | integer ops | bigint | bigint | 1 | btint8 cmp (bigint,bi ..

btree | integer ops | bigint | bigint | 2 | btint8 sortsupport (in..

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 160

Operator class for index

When creating an index, you can specify an operator class for each index column. In the class
includes operators that will be used by the index for comparisons, sorting, and ordering of column
values. If you do not specify an operator class, the default operator class for the column type and
access method is used. Multiple classes for the same data type allow you to perform calculations and
order data differently.

Operator classes for similar types (int8, int4) are included in an operator family. Operators are a
way to write an expression more compactly than using functions. When creating an operator, the name
of the function is specified. For example, " + " is equivalent to the sum (a,b) function
Functions are data processing algorithms. Algorithms can be universal: work with different data types.
In order not to create a large number of functions, universal functions are created. Based on these
functions, " universal " operators are created that work with many data types. Operators are combined
into operator families. Operator families allow you to create execution plans with expressions of
different types without using explicit type casting.

List of functions, used by families of operators : \ dA p + btree integer ops

List of support functions of operator families
AM | Operator family | Registered left type | Registered right type | Number | Function
——————— R et e it e e et T et

btree bigint | bigint | 1 | btint8 cmp (bigint,bi ..
btree bigint | bigint | 2 | btint8 sortsupport (in..
btree bigint | bigint | 3 | in range (bigint ,

btree bigint | bigint | 4 | bt equalimage (oid)

List of classes default: \ dA ¢ + btree integer
List of operator classes

AM | Input type | Storage type | Operator class | Default? | Operator family | Owner
——————— B e e et T
btree | integer | | int4 ops | yes | integer ops | postgres

A request similar to the command \ dac +
SELECT am.amname "AM", format type (c.opcintype , NULL) "type",
c.opcname " op_class ", c.opcdefault "d", of.opfname " op_ family "
FROM pg_opclass c JOIN pg am am on am.oid = c.opcmethod JOIN pg opfamily of ON of.oid = c.opcfamily
ORDER BY 1, 2, 4;

Inthe text pattern ops class Other operators are included that implement pattern and regular
expression searches.

Families and classes of operators

= The operator class binds operators that will play roles Pg_am
(strategies) in the methods that the index logic uses to access methods
order (compare, sort, measure distances, associate) "ot
data. The operator class specifies the names of the "
supporting " functions that the index method will use to
pg_opclass
search or sort data. operator classes

- list of operators: |7

* oid
method
family
N/
\ dAo btree
AM | Operator family | Operator | Strategy | Purpose .
_______ oy pg_opfamily
btree | integer ops | <(bigint,bigint) | 1 | search families of operators
btree | integer ops | <=(bigint,bigint) | 2 | search |} | TTmmmm————
btree | integer ops | =(bigint,bigint) | 3 | search * oid
btree | integer ops | >=(bigint,bigint) | 4 | search
btree | integer ops | >(bigint,bigint) | 5 | search

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 161

Families and classes of operators

An operator class is created for an access method and data type ; it has functions implementing the
operators that the method supports. An operator class is associated with a data type and index type,
and can optionally be included in an operator family. If you do not specify a family, the class is placed in
a family with the class name. If there is no family with such a name, it is created . It may seem that index
types (access methods) are associated (depend on availability) with families:

List of operators: \ dAo btree
AM | Operator family | Operator | Strategy | Purpose

——————— B st e
btree | integer ops | <(bigint,bigint) | 1 | search
btree | integer ops | <=(bigint,bigint) | 2 | search
btree | integer ops | =(bigint,bigint) | 3 | search

vice versa: an operator family is associated (depending on the presence) with an access method.
Access methods are associated only with operator classes .

Operator families allow you to create execution plans with expressions of different types without using
explicit type casts.

The operator class binds operators that will play roles (strategies) in the methods that the index logic
uses to order (compare, sort, measure distances, associations, etc.) data. The operator class specifies
the names of the " supporting " (supporting , (supporting) functions that will use the index method
when searching or sorting data.

Operators and support functions are defined in an operator class when it is created and the set does
not change (strong coupling). If an index is created that uses an operator class, the class cannot be
dropped without dropping the index. Operators and functions that are required for an index are
included in the operator class, not the family. Operators and functions can be added to and removed
from the family (weak coupling). When operators and support functions are added to a family using
ALTER OPERATOR FAMILY, they do not become part of any operator class in the family, but are
considered " loosely coupled " to the family. These operators and functions are compatible with the
family, but are not required for the correct operation of the indexes .

https://docs.tantorlabs.ru/tdb/ru/16_4/se/sql-createopclass.htmi

Lists of strategies: https://docs.tantorlabs.ru/tdb/ru/16_4/se/xindex.html

Support functions for the index

= For indexing using the btree method :
> it is enough that the operator class contains a function (BTORDER_PROC)
compare (compare) two values
> for efficient sorting (ORDER BY) it is desirable to have a second function
for quick sorting of values (BT SORTSUPPORT _PROC)
> to allow the planner to use the index in the "RANGE" expressions of
window functions need third function (BT INRANGE _PROC)
> To support deduplication, a fourth function is needed (BT EQUALIMAGE
_PROC).
= List of functions :

\ dA p + btree integer ops
List of support functions of operator families

AM | Operator family | Registered left type | Registered right type | Number | Function
——————— ettt S ittt
btree | bigint | bigint | 1 | btint8 cmp (bigint,bi ..
btree os | bigint | bigint | 2 | btint8 sortsupport (in..
btree ~ops | bigint | bigint | 3 | in range (bigint , ..
btree inte ops | bigint | bigint | 4 | bt equalimage (oid)
Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 162

Support functions for the index

btree is the most commonly used index type in DBMS. For indexing by the method btree it is enough
that the data type is comparable. For this purpose, the operator class has a supporting (' reference ")
function (BTORDER_PROC) that could compare two values of the data type for which the operator
class was created. The result of the function is a negative value, a positive value, or zero if the values
are equal.

For efficient sorting (ORDER BY) it is desirable that the operator class have a second (Number 2)
function for quickly sorting values (BT SORTSUPPORT _PROC).

To enable the planner to use the index in the "RANGE" expressions of window functions the third (
Number 3) function (BT INRANGE _PROC) is needed.

To support deduplication the fourth (Number 4) function (BT EQUALIMAGE PROC) is needed.

List of functions, used by families and classes of operators of the same name :

\ dA p + btree integer ops

List of support functions of operator families

AM | Operator family | Registered|Registered| Number | Function
| | left typelright typel

———————————— s st

btree | integer ops | bigint | bigint | 1 | btint8 cmp (bigint,bigint)

btree | integer ops | bigint | bigint | 2 | btint8 sortsupport (internal)

btree | integer ops | bigint | bigint | 3 | in range (bigint,bigint , bigint,boolean,boolean)
| integer ops | bigint | bigint | 4 | bt equalimage (oid)

btree | integer ops
btree | integer ops

smallint | integer | 1 | btint24 cmp (smallint,smallint)
smallint | integer | 3 | in range (smallint,smallint,smallint,smallint)

btree | text ops | text | text | 1 | btnametext cmp (text,text)
btree | text pattern ops | text | text | 4 | bt equalimage (oid)
(22 rows)

When an operator class is created, it is included in a family with the same name. If there is no family
with such a name, it is created. Therefore, the names of families and classes coincide .

Indexes for integrity constraints

= For PRIMARY KEY and UNIQUE integrity constraints , a unique btree
index is required on the columns that are part of the integrity
constraint.

= other indexes can be used to speed up queries (" analytical indexes "
), full-text search

= indexes speed up row searching and slow down adding, changing, and
deleting rows

< indexes use disk space, size is comparable to table size

= example of replacing an index with another index:

create table t3 (n int4 primary key, m int4);

Indexes:

"t3 pkey" PRIMARY KEY, btree (n)

create unique index concurrently t3 pkeyl on t3 (m,n);

ALTER TABLE t3 DROP CONSTRAINT t3_pkey, ADD CONSTRAINT t3 pkey PRIMARY KEY USING INDEX t3_pkeyl;
NOTICE: ALTER TABLE / ADD CONSTRAINT USING INDEX will rename index "t3 pkeyl" to "t3 pkey"
Indexes:

" t£3 pkey " PRIMARY KEY, btree (m, n)

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 163

Indexes for integrity constraints

If you do not specify an index type in the CREATE INDEX command , an index of type btree is created .
btree the most common type of index in relational databases, working with many types of data.

PRIMARY KEY (PK) and UNIQUE (UK) integrity constraints, btree indexes are required . For other
integrity constraints, they are optional and are created if: they speed up queries, do not significantly
slow down data modification , and the space used by the indexes is not critical .

When creating PRIMARY KEY (PK) and UNIQUE (UK) integrity constraints, unique btree indexes are
created . The rules for using indexes with integrity constraints differ from Oracle Database.

For example, in PostgreSQL without a unique PK constraint index and UK cannot exist:

ERROR: PRIMARY KEY constraints cannot be marked NOT VALID

and cannot use non-unique indexes:

alter table t3 drop constraint t3 pkey, add constraint t3_pkey primary key using
index t3_pkeyl;

ERROR: "t3 pkeyl" is not a unique index;

In Oracle Database there is an enabled and disabled state of integrity constraints, an index is created
when an integrity constraint is enabled , and non-unique indexes can be used. Such differences do not
provide advantages or disadvantages, but it is useful to know about the differences when operating
and maintaining tables if you have experience working with DBMSs other than PostgreSQL .

In PostgreSQL only index type btree supports the UNIQUE property (can be unique) :

select amname , pg_indexam has property (a.oid, ' can unique ') as p from pg _am
a where amtype = ' i ' and pg_indexam has property (a.oid, ' can_unique ') = true
order by 1;

amname | p

—_——— e — = +___

Indexes can be used to speed up queries (“analytical indexes"), full-text search. Indexes speed up the
search for rows and slow down the addition, modification, and deletion of rows. The size of indexes is
comparable to the size of the table.

You can create a new index and assign it to replace the old one, but it must be unique:

create table t3 (n int4 primary key, m int4d);

\d t3

Table "public.t3"
Column | Type | Collation | Nullable | Default

———————— B ittt e e
n | integer | | not null |

m | integer | | |

Indexes:

"t3 pkey" PRIMARY KEY, btree (n)

create unique index concurrently t3 pkeyl on t3 (m,n);

ALTER TABLE t3 DROP CONSTRAINT t3 pkey, ADD CONSTRAINT t3 pkey PRIMARY KEY USING
INDEX t3 pkeyl;

NOTICE: ALTER TABLE / ADD CONSTRAINT USING INDEX will rename index "t3 pkeyl" to "t3 pkey"

\d t3

Table "public.t3"
Column | Type | Collation | Nullable | Default

———————— B e bt e
n | integer | | not null |

m | integer | | not null |

Indexes:

" £3 pkey " PRIMARY KEY, btree (m, n)

The old index was dropped. The integrity constraint columns are defined by the index columns. You
cannot drop an index without dropping the PRIMARY KEY integrity constraint .

PRIMARY KEY differs from UNIQUE in that it is unique per table and adds NOT NULL integrity
constraints. on all columns. In the example, not null appeared on both columns .

When you drop a PRIMARY KEY , NOT NULL constraints are not dropped because they may have been
added separately.

A FOREIGN KEY integrity constraint can only be created on columns with a PRIMARY KEY or UNIQUE ,
otherwise an error will be returned :

ERROR: there is no unique constraint matching given keys for referenced table "t3"

When adding an integrity constraint :

alter table t3 add constraint fk foreign key (m) references t3(n) not wvalid;

\d t3

Table "public.t3"
Column | Type | Collation | Nullable | Default

———————— o
n | integer | | not null |

m | integer | | |

Indexes:

"t3 pkey" PRIMARY KEY, btree (n)

Foreign key constraints:

" fk " FOREIGN KEY (m) REFERENCES t3(n) NOT VALID

Referenced by:

TABLE "t3" CONSTRAINT " fk " FOREIGN KEY (m) REFERENCES t3(n) NOT VALID

alter table t3 validate constraint fk ;

ShareRowEXxclusive lock requested during row validation on both tables (with FOREIGN KEY and the
key it refers to). In the example, there is one table (self -referencing key). When adding other types of
integrity constraints, AccessExclusive is usually requested .

Do | need to create an index on the FOREIGN KEY column? If the table with FK has few rows and a full
scan is faster than an index scan, then it is not necessary. An index on FK is created if:

1) in the master table (where PK is) the PK column value is frequently updated or rows are deleted.
These actions are undesirable and are avoided when designing applications.

PK-FK table joins . This is used very often, because that is what FK is for: it defines the connection (
join) between tables. For example:

select master.m , detail.n from t3 master join t3 detail on (master.n =
detail.m) ;

https://www.cybertec-postgresqgl.com/en/index-your-foreign-key/

btree index

= For a numeric column (int2, int4, int8) in the internal (intermediate) block
at 70% filling, 286 links fit, at 100%, 407 links fit

= If you specify more than one column in the index:
> the order of indexed columns is important

one can imagine that the result of concatenating the column values is indexed

the first column is called the leading column

the index is called composite

= The index record must fit into 1/3 of the block (2704 bytes) :

v

v

v

create table t (id int8, s text storage plain);

create index t_idx on t (s text_ops) include (id) ;

insert into t values (1, repeat('a', 2700));

ERROR: index row size 2720 exceeds btree version 4 maximum 2704 for index " t idx "
DETAIL: Index row references tuple (0,2) in relation "t".

HINT: Values larger than 1/3 of a buffer page cannot be indexed.

Consider a function index of an MD5 hash of the value, or use full text indexing.

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

btree index

For a numeric column (int2, int4, int8) in the intermediate (internal) block at 70% filling, 286 links fit,
at 100% filling, 407 links fit. The number of index levels (level starting from zero) per numeric column
with monotonous filling by sequence will not exceed 5: 286 * 5 = 1913507486176 references to rows. If
the row size is 18 bytes, then this is 32 TB, which is the maximum table size. For 4 levels, the number of
rows is 6690585616 .

To search for a row in the index, the process reads at least a level+1 block and possibly one or more
leaf blocks to the right. If Index Only Scan is not used or the block may contain (checked by the vm
visibility map) irrelevant rows, then it will also have to read the table block. Each block reading is a
search by the Buffer Mapping Table , block pinning, and an increase in usagecount . Therefore, adding
a new level to the index reduces performance. If rebuilding the index reduces the number of levels,
then the performance of index search (index access) increases.

The intermediate index blocks store the value of at least the first indexed column. If the values are
long, the number of records in the intermediate blocks may be large, the number of levels will be large,
and the size of the index will also be large. Therefore, it is not advisable to index the first columns with
long values . The suffix truncation optimization may exclude column values from non-leaf blocks.
INCLUDE column values are present only in leaf blocks.

The index record must fit into 1/3 of the block (2704 bytes) :

create table t (id int8, s text storage plain);

create index t idx on t (s text ops) include (id) ;

insert into t ;alues (repeat('a'T 2700));

ERROR: index row size 27 20 exceeds btree version 4 maximum 2704 for index " t idx "

DETAIL: Index row references tuple (2,1) in relation "t". B

HINT: Values larger than 1/3 of a buffer page cannot be indexed.

Consider a function index of an MD5 hash of the value, or use full text indexing.

Pageinspect extension functions for btree

* bt metap (relname) gives outinformation from the index
metadata block. This is always the first block of the first index file
(block number zero)

* bt page stats (..) andbt multi page stats (..) numbers
of neighboring blocks to the left (btpo_prev) and right (btpo_next) at

CREATE Tét@t%gmstlgt\énge plain) with (autovacuum enabled =off, fillfactor =40);

Create index t_idx on t (5] — = ! * *

INSERT INTO t VALUES (repeat('a',2500)) ;INSERT INTO t VALUES (repeat('b',2500));

INSERT INTO t VALUES (repeat('c',2500));INSERT INTO t VALUES (repeat('d',2500));

select * from bt multi_page_stats ('t _idx',1,-1);

blkno|typellive items|dead items|avg item size|pagesize|freesize|btpo prev|btpo next|btpo level|btpo flag
s

————— B s st Attt et ittt

11 1|1 2| 0| 2512 | 8192 | 3116 | O | 2 | 0 | 1
2 1 1 1 31 0| 2512 | 8192 | 00 | 1 | O | O | 1
3 | r | 21 0] 1260 | 8192 | 5620 | O | O | 1 | 2
select itemoffset , ctid , itemlen , nulls, vars , dead, htid , tids , data from bt_page items
("t_idx',1);
itemoffset | ctid | itemlen | nulls | vars | dead | htid | tids | substring

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 166

Pageinspect extension functions for btree

To view index data, use the standard pageinspect extension :

create extension if not exists pageinspect ;

The list of extension functions can be obtained using the command : \ dx + pageinspect

bt metap (relname) gives outinformation from the index metadata block. This is always the first
block of the first index file (block number zero).

bt page stats (relname , blkno) takes an index name and a block number, and produces
one line:

1) type index block type: 1 leaf sheet , i internal internal (between root and leaf) , r root root , d
deleted leaf (free) , D deleted internal (free) , e ignored

2) avg_item size - average size of arecord in a block

3) free size how many bytes are free in the block

4) btpo prev btpo next numbers of blocks to the left and right (siblings) at the same level. Zero
means that the block is the outermost at its level. In leaf blocks, they are used for navigation when
searching by range, sorting. btpo next is requested by the server process to find the correct leaf
block in case the block split while the process was descending to it from the upper level. To check for
such a situation, the first record of a leaf or intermediate block (except for the rightmost at its level) is
used, which always stores the value of key columns greater than or equal to which there is no value in
this block (called High key).

By btpo prev , btpo next , bt page items () .ctid you can navigate the index tree and
even draw the tree.

5) dead items - the number of "killed" (LP_DEAD flag for the index entry) entries as a result of
simple deletion index block

6) live items - number of used entries in the index

bt multi page stats (relname , blkno , blk count bigint) produces the same as the
previous function, only for the range of index blocks. A negative number inblk count means the last
page. blkno is the block number from which to produce data.

bt page items (relname , blkno) returns the contents of the index block entries in a human-
readable form.

https://docs.tantorlabs.ru/tdb/ru/16_4/se/pageinspect.html#PAGEINSPECT-B-TREE-FUNCS

Deduplication appeared in PostgreSQL version 13 and uses fields to store information that are
intended for other purposes without deduplication . This made it possible not to radically change the
index structure and not require rebuilding indexes when migrating to a new version of PostgreSQL.

If the block is sheet and tids not empty, then deduplication and tids are used stored in sorted (by
block) and slot) ctid link format on the rows in the table. In htid the first tid is saved from tids . ctid at
the same time, it stores not references to blocks, but service data about tids . For example, ctid of
intermediate blocks will store the block number in the index, referring to the lower level, and the second
part of ctid - the number of elements in tids .

If tids empty, then deduplication is not used in this index entry. In ctid leaf block stores a reference to
the indexed row of the table. The htid (heap tuple id) field stores the same value as ctid . Why is the
value duplicated in ctid and htid ? Btree operation algorithm optimized for operation under conditions of
minimum blocking and to minimize block splits. During the process of reading index blocks, other
processes can change its structure. When navigating through blocks, there is no single picture (" read
integrity ") and additional fields are used to detect contradictions.

In intermediate blocks in ctid the reference to the index block is stored, and the second number is
one or zero . If one, then the data field stores the minimum value that is present in the child leaf block. If
zero ctid =(N, 0) , then the data field empty (interpreted as " minus infinity " , that is, the
boundary is unknown) and this link leads to the leftmost child block .

The index uses the suffix truncation optimization and truncation of indexed columns in the data field is
its consequence. Because of this optimization, the btree index used in PostgreSQL can be called
"Simple Prefix B-Tree" . Simple because whole fields are truncated (whole "attribute™ truncation). For
a single-column index, there remains an empty space, which is treated as minus infinity .

data field of the current and next (itemoffset+1) records specifies the range that must contain the value

by which the search is performed in the index :
select itemoffset , ctid , itemlen , nulls, vars , dead, htid , tids , data from bt page items ('t idx',61);

itemoffset | ctid | itemlen | nulls | vars | dead | htid | tids | substring
———————————— Bt e e e it
101 (1,1) | 2512 | £ 1 £t | | | | 20 27 00 00 62 62 62 62
2] (0,1) | 2512 | £ | ¢t | £ 1 (O,1) | | 20 27 00 00 61 61 61 61

data value is included in the range and is the first value in the block the record points to. The next
record 's data value is not included in the range. The next record is the first record in its range.
The sizes of indexes can be obtained with the command \ di + * index name * .

For a more detailed selection, you can use the following query as a template:

select i.relname "table", indexrelname "index",

pg_INDEXES size (relid) " indexes_size ",

pPg_RELATION size (relid) " table size ",

pg_TOTAL RELATION size (relid) "total",

Pg_RELATION size (indexrelid) " index size ",

reltuples :: bigint "rows",

ii.indexdef ddl

from pg stat all indexes i join pg class c on (i.relid = c.oid)

join pg_indexes ii on (i.indexrelname = ii.indexname)

where i.schemaname not like 'pg %' -- do not output service objects

order by pg INDEXES size (relid) desc , pg RELATION size (indexrelid) desc ;
table| index | indexes size|table size | total | index size |rows | ddl

——————————— e aata e et e e e e

test | test id idx | 6876692480|11097309184]17977090048|6876692480(299916064| CREATE INDEX test id idx

ON public.test USING btree (id)
t4 |td4 _pkey | 679936] 1187840| 1892352| 679936| -1 |CREATE INDEX t4 pkey
ON public.t4 USING btree (id) WITH (fillfactor ='100")

In the column indexdef pg_indexes views The index creation command is stored .

If rows=-1 This means that the table does not have statistics. You can collect statistics using the
ANALYZE command.

https://raw.githubusercontent.com/postgres/postgres/refs/heads/master/src/backend/access/nbtree/
README

Indexes with deduplication in leaf blocks

= if the index is not unique, then with a large number of duplicates they are
stored compactly due to deduplication in leaf blocks

= Not all data types support deduplication.
> do not support: numeric, jsonb , float4, float8
> do not support: arrays, composite, range types
> INCLUDE indexes do not support deduplication

= The values of indexed columns are stored in index entries, and
references to table rows are stored in d in the tid column (tuple id , table
row identifier) as a sorted array ctid

= example of two records with deduplication and one without deduplication

select itemoffset , ctid , itemlen , nulls, vars , dead, htid , data, tids [0:3] from bt page_items
('td_idx',1);
itemoffset | ctid | itemlen|nulls|vars|dead|htid | data | tids
—————————— B et e st et s B
1 |(l6.8414)]| 1352 | £ | £] £ |(0,1) |01 00 00 00 OO 00 OO OO| {™ (O.1) ™,"™ (0.2) "™,"™ (0.3) "
2 1(16.8377)| 1128 | £ | £ | £ |(10,13)]01 00 00 00 00 00 00 0OO| {"™ (10,13) ™,™ (10,14) ™, "™ (1

31 (19.9) | 16 | £ | £ | £ 1(19.9) |01 00 00 00O 00 OO0 00 00|

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Indexes with deduplication in leaf blocks

If the index is not unique, then with a large number of duplicates they are stored compactly due to
deduplication in leaf blocks. Not all data types support deduplication . To support deduplication ,
function number 4 (BTEQUALIMAGE_PROC) must be defined in the operator class for the data type
being indexed .

You can check whether deduplication is supported in the index using the following query:
select * from bt metap (' t_idx ');

magic|version|root|level|fastroot|fastlevel|last cleanup num delpages|last cleanup num tuples| allequalimage
——————————— B e e e et s ettt et
3403221 4 | 3 | 1] 31 11101 -1]¢t

If allequalimage =t that is supported . Deduplication appeared in PostgreSQL version 13.

The same query shows the number of index levels: level=1. The numbering of levels starts from zero.
The magic and version fields are used to check that the object is a btree index. supported version.
Starting with PostgreSQL 1 2 version 4 index version is used, minimally supported in PostgreSQL 17
version version= 2. If the version is less than 4 , then the index can be used, but the innovations are not
supported. To support innovations it is enough to rebuild the index (REINDEX) . " Magic " number
340322 (0x0531162). The value of the number is chosen randomly, it should be in the zero block at the
" correct " offset.

The values of indexed columns are stored in records index, and references to table rows are stored in

the tid s column (tuple ids , table row identifiers) as a sorted array values of type ctid .

drop table td; create table td(id serial) with (autovacuum enabled =off); create index td_idx on td(id);

insert into td select 1 from generate_series (1, 408);

select itemoffset , ctid , itemlen , nulls, vars , dead, htid , data, tids [0:3] from bt page items
('td_idx',1);

select * from bt multi_page stats ('td idx',1,-1);

itemoffset | ctid | itemlen|nulls|vars|dead|htid | data | tids

—————————— Bt e s it S Tt it e L
(16.8414)| 1352 | £ | £ | £ |(0,1) |01 00 00 00 00O 00 0O OO| {™ (O.1) ™,™ (0.2) ™,™ (0.3) "
(16.8377)| 1128 | £ | £ | £ |1(10,13)101 00 00 00 00 OO 00 OO| {™ (10,13) ™,"™ (10,14) "™," (1

3| (19.9) | 16 | £ £ | £] (19.9) |01 00 00 00 00 00 00 00|

In line itemoffset = 3 no deduplication (tids empty) and the table row is pointed to by ctid = (19,9) .
tids point to the table rows .

Deduplication occurs when there is no space in a block or the fillfactor is exceeded .
https://docs.tantorlabs.ru/tdb/ru/16_4/se/btree-implementation.html#BTREE-DEDUPLICATION

Check if deduplication is supported

= deduplication is not supported with data types: numeric , Jjsonb ,
float4, float8 ,arrays, composite, range types

= Indexes with INCLUDE columns do not support deduplication

= Examples of a query to check if deduplication is supported:

create table td(n timestamp , nl date , n2 integer , n3 char , nd4 text , n5 varchar);
create index td_idx on td (n,nl,n2,n3,n4,n5);

select allequalimage from bt metap (' td_idx ');

allequalimage

create index tdl_idx on td(n) include (nl);
select allequalimage from bt metap ('tdl_idx');
allequalimage

create table td(id int8 []);

create index td idx on td(id);

select allequalimage from bt _metap (' td_idx ');
allequalimage

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

Check if deduplication is supported

You can check whether deduplication is supported in the index using the following query:
create table td(n timestamp, nl date, n2 integer, n3 char, n4 text, n5 varchar);
create index td_idx on td (n,nl,n2,n3,n4,n5);

select allequalimage from bt metap (' td_idx ');

allequalimage

If allequalimage = t then deduplication is supported. A composite index supports deduplication if
the key data types support it.
create index tdl_idx on td(n) include (nl);
select allequalimage from bt metap ('tdl_idx');
allequalimage

Indexes with INCLUDE columns do not support deduplication even if the data types do.
create table td(id int8 []);

create index td_idx on td(id);

select allequalimage from bt metap (' td_idx ');

allequalimage

Index creation parameters and their impact on
performance

= by default the index is built in ascending order

= When creating an index, you can specify the reverse order: DESC

= Right blocks are optimized for inserts

= by default empty values are stored in the right blocks

= inserting rows with NULLs will be slower when using NULLS FIRST

= vacuum reads all index blocks in physical order from first to last block

= include column values in an index without including them in key values
increases the size of the index

create unique index concurrently if not exists tl_idxl ON tl using btree
(c2 desc nulls first , upper(cl)) include (c3,c4) with (fillfactor =100,
deduplicate_ items =off) WHERE c2>0 ;

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 170

Index creation parameters and their impact on performance

The leaves of the tree repeat the values of the rows of the original table. They are presented in
ascending or descending order.

By default, the index is built in ascending order, i.e. smaller values are on the left, larger values are on
the right. Leaf blocks and blocks of each level have pointers to neighboring blocks in both directions.

When creating an index, you can specify the reverse order: DESC . You should not do this for indexes
filled with an ascending sequence. The ASC and DESC property when creating an index does not affect
the efficiency of the index use by the planner (for example, ORDER BY ASC or DESC). This property
affects the index filling : the right blocks in the index differ from the rest in that they are optimized for
inserts . It is desirable that inserts are performed predominantly in the right leaf block of the index. "
Right blocks " always remain " right " in the index structure. regardless of ASC or DESC .

By default, empty values are saved. on the right, in the " right blocks " . This can be overridden. having
indicated NULLS FIRST . When overriding, it is usually assumed that the default is to output first when
sorting. However, using NULLS FIRST may affect performance: if NULL is inserted into the index when
inserting rows into a table (when inserting a row into a table, the value of the indexed column is not set,
but is updated later, and the updates are distributed over time, not bulk), then fastpath optimization
stops working, so as NULL will be in the leftmost leaf block, and fastpath works only with right . Inserting
rows with NULLs will be slower when using NULLS FIRST .

" fastpath " optimization is similar to " fastroot " , but these are different optimizations.

You can index not only columns, but also . This is a useful option, but you should not
create a large number of indexes.

You can include column values in an index without including them in key values. You cannot include

, only columns. The include option increases the size of the index. Columns are included to
make the index " covering " queries - so that Index Only Scan is used , but the column cannot be
included in the key columns, since the column data type does not support the operator class. index.

create unique index concurrently if not exists tl idxl ON tl using btree (c2
desc nulls first ,) include (c3,c4) with (fillfactor =100,
deduplicate items =off) WHERE c2>0;

Partial indices

= are created based on a portion of the table rows

= The WHERE predicate is specified when creating an index and
determines the rows to be indexed.

= are useful because they allow you to avoid indexing the most
frequently occurring values

= partial index can be unique

= the size of a partial index is usually smaller

= Example of creating a partial index:

create unique index tl_idxl ON tl (c2 desc nulls first , upper(cl))
include (c3,c4) WHERE c2>0 ;

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 171

Partial indices

Partial indexes are created on a part of the table rows. The part of the rows is defined by the WHERE
predicate, which is specified when creating the index and makes the index partial .

The index size can be significantly reduced and vacuuming will be faster, since vacuuming scans all
index blocks. Partials can be created indexes. This is useful if the application does not work with
unindexed rows . When creating an index, you can specify a WHERE condition . The size of the index
can be significantly reduced and vacuuming will be faster, since vacuuming scans all index blocks.

Partial indexes are useful because they avoid indexing the most frequently occurring values. A most
frequently occurring value is a value that is present in a significant percentage of all rows in a table.
When searching for the most frequently occurring values, the index will not be used anyway, since it
would be more efficient to scan all rows in the table. There is no point in indexing rows with the most
frequently occurring values. By excluding such rows from the index, you can reduce the size of the
index, which will speed up the vacuuming of the table. It also speeds up changes to table rows if the
index is not affected.

The second reason why a partial index is used is when there are no requests to some of the table
rows, and if there are requests, then not index access is used, but a full table scan.

A partial index can be unique.

It is not worth creating a large number of partial indexes that index different rows. The more indexes
on a table, the lower the performance of commands that change data; autovacuum; the probability of
using the fast path of locks decreases.

https://docs.tantorlabs.ru/tdb/ru/16_6/se/indexes-partial.html

Evolution of indexes: creation, deletion, rebuilding

* create /drop/ reindex commands index index name sets a SHARE
lock that is incompatible with making changes to table rows

= these commands can be executed simultaneously, they are compatible
with themselves, but are not compatible with concurrently

= autovacuum is not compatible with either concurrently , not without

- for temporary indexes on temporary tables, there is no need to use
concurrently , since there are no locks on temporary objects

e create/ reindex concurrently scans the table twice , without
concurrently once

e concurrently allows the execution of SELECT, WITH, INSERT,
UPDATE, DELETE, MERGE commands and allows using the fastpath for
blocking objects (tables, indexes, sections)

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 172

Evolution of indexes: creation, deletion, rebuilding

Creating, deleting, rebuilding an index without specifying CONCURRENTLY:

create index name ..;

drop index index name ;

reindex index index name ;

SHARE lock , incompatible with making changes to table rows. The SHARE lock only allows the
following commands to work:

1) SELECT and any query that only reads the table (i.e. sets an ACCESS SHARE lock)

2) SELECT FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE, FOR KEY SHARE (set ROW SHARE lock)

3) CREATE/DROP/REINDEX INDEX (without CONCURRENTLY). You can simultaneously create , drop,
and rebuild multiple indexes on a single table because the SHARE lock is compatible with itself.
CONCURRENTLY is not compatible with SHARE .

" Not compatible " means that either the command will wait, or will fail immediately, or will fail after the
timeout specified by the lock timeout parameter .

For temporary indexes on temporary tables, you do not need to use CONCURRENTLY , since there are
no locks on temporary objects, only one process has access to them, even parallel processes do not
have access.

create index concurrently name ..; sets SHARE UPDATE EXCLUSIVE lock , which allows
execution of SELECT, WITH, INSERT, UPDATE, DELETE, MERGE commands and enables use of the
fastpath for locking objects by processes .

SHARE UPDATE EXCLUSIVE lock is also set by the DROP INDEX CONCURRENTLY commands,
REINDEX CONCURRENTLY , as well as VACUUM (without FULL), ANALYZE, CREATE STATISTICS,
COMMENT ON , some types ALTER INDEX and ALTER TABLE , autovacuum and autoanalysis . These
commands cannot work with one table at a time . Autovacuum skips tables if it cannot immediately
obtain a lock. Autovacuum is incompatible with creating, deleting, recreating indexes.

CONCURRENTLY has a significant drawback. Without CONCURRENTLY the table is scanned once,
with CONCURRENTLY the table is scanned twice and three transactions are used.

CONCURRENTLY waits for all existing transactions that could potentially modify and use the index to
complete. The first transaction creates the index definition and adds it to the system catalog as invalid .
Next, the process waits for all transactions that modified the table during the first transaction to
complete. The second transaction begins, in which the table is scanned and the index structure is built.
Next, the process waits for all transactions that modified the table during the second transaction to
complete. The third transaction begins, in which the table is scanned again and the index structure is
updated. The process waits for all transactions that received a snapshot before the second transaction
to complete.

If a problem occurs while scanning a table, such as a deadlock or a uniqueness violation in a unique
index, the CREATE INDEX CONCURRENTLY command will fail and leave the index in an invalid state.

How do | recover from a failed command ? Either execute the REINDEX INDEX CONCURRENTLY
command or delete the index with the DROP INDEX or DROP INDEX CONCURRENTLY command. After
deleting the index, you can repeat the command or create the index without CONCURRENTLY.

btree index

= block types: metadata, root, internal, index file, 8Kb blocks select ctid
leaf of] 1 ;i:;(il) ©

= the path from the root to the leaf blocks A pry cstd e
is of equal depth (balanced) 1 0,1) 1 a

= in leaf blocks references to table rows (° "o leZfr(l)ofl ([xow)
block, line in block) fastlevel

= in non-leaf blocks references to index — N
blocks (block, row in block) Lo B -

create table t(s text storage plain) with (fillfactor =10);

create index t_idx on t (s) with (fillfacter =10):

insert into t values (repeat('a',6 2500-));

select itemoffset , ctid , itemlen , nulls, vars , dead, htid , tids , left(data,24) data, chr
(nullif (('0x0'||substring{data from 13 for 2))::integer,0)) c from bt page items ('t_idx', 1
);

itemoffset | ctid | itemien | nulls | vars | dead | htid | tids | data | c¢

————————— T o m————— R o fmm———— Fmmmm e =
1] (0,1) | 2512 | £ | ¢t | £ | (O,1) | | 20 27 00 00 | a
£cnt
Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 174

btree index

To visualize the structure of a btree index , let's create a table and an index:

drop table t;

create table t(s text storage plain) with (autovacuum enabled =off, fillfactor =10);
create index t _idx on t (s) with (fillfactor =10, deduplicate_items = off);

An index file with one block was created. The first (0) block of the index contains metadata :

select * from bt metap (' t_idx ');

magic|version| root | level |fastroot|fastlevel|last cleanup num delpages|last cleanup num tuples|allequalimage
——————————— R e e et e et e T e

3403221 4 | 0| O] O] 0] O1]-11Tt

1) level - the number of levels in the index tree. Levels are numbered from zero and from leaf blocks
because the index grows from the bottom up and a new level is added above the root block.

2) root - the number of the root block. The root block can change when the number of index levels
increases

When inserting a row, block number 1 is added to the index . It is formally leaf (type=1), there is no
root or internal block:

insert into t values (repeat('a',2500));

select * from bt _page stats ('t_idx',6 1);

blknol|typel|live items|dead items|avg item size|pagesize|freesize|btpo prev|btpo next| btpo level |btpo flags
————— e it B e it

101 | 110 | 2512 | 8192 | 5632 | 0 | O | 0 | 3
select itemoffset , ctid , itemlen , nulls, vars , dead, htid , tids , left(data,24) data, chr (nullif
(('0x0' | |substring(data from 13 for 2))::integer,0)) c from bt page items ('t idx',1);
itemoffset | ctid | itemlen | nulls | vars | dead | htid | tids | data | c¢

——————————— B fomm—————— fo————— o fo———— fo————— fo———— fomm +-=

11 (0,1) | 2512 | £ 1 t | £ 1 (0,1) | | 20 27 00 00 | a

The letter " = " has a hexadecimal code of " ©1 ™.

The link to block number 1 is inserted into the root fields and fastroot metadata block:
magic|version| root | level | fastroot

|fastlevel|last cleanup num delpages|last cleanup num tuples|allequalimage

——————————— i et Rt it T et
3403221 4 | 1 | O | 1 |1 0| o] -11 ¢t

Number of levels is currently O . Line length itemlen = 2512 bytes.
Using itemlen you can evaluate whether it is worth indexing this column. In the example, the length is
significant: the row is 2500 bytes in size and the index will be larger than the table.

High Key in index structure

= first line in intermediate and leaf blocks except for index file, 8Kb blocks
the very " right " ones always stores a service oll 2l 5l 5 select ctid |,
value called " High key ". left(s,1) c
. . . . from t;
= when inserting a new block into the index structure ctid | c
are updated High keys and links to neighboring |- +---
i i (0,1) | a
blocks of the same lewe| . High stor_es a value 4 lines 1.1) | b
greater than those that carnappear in this block. s (2,1) | ¢
level 1 (3,1) | 4
0 - block fastroot (4 rows)
metadata 3
3lin fastioval
zoavv l
1 3 (1.0)
level O (2,1) b
fastroot 1
fastlevel
[0) 1 1
; 1 \\ +1)b L -sheet
(0.1)a (1,1)b (2 blocks (1, 2)
1,1 level O
§9,121: (0.1)a ,1)c
e (3,1)d

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025

High key in index structure

The second and third lines will fit into the same block:

itemoffset | ctid | itemlen | nulls | vars | dead | htid | tids | data
———————————— B T T e s
11 (0 ,1) | 2512 | £ | t | £ 1| (0,1) | | 20 27 00 00 61 61 61 61
2 1 (,1) | 2512 | £t | £ (1 ,1) | | 2027 000062 6262¢6 2

31 (2 ,1) | 2512 | £ |t | £ (2 ,1) | | 2027 0000 6 3636 363

In the ctid field index records indicate references to the address of the indexed row in the table files: (
0,1 (@11 (2,1) - rows with values "a..", "b..", "c.." in O, 1 and 2 (block number in the main layer of the
table) table blocks. Each table block contains one row; the length of a row in a table block is 2504+24
(row header in the table)=252 8 bytes:

select pg column_size (s) from t limit 1;
2504

After inserting the fourth row, there will be three blocks in the index tree (plus the metadata block):
1,2,3. Blocks 1 and 2 will be leaf blocks, and 3 will be the root block. The references to the rows will be
redistributed: the first leaf block will retain references to a :

itemoffset | ctid | itemlen | nulls | vars | dead | htid | tids | data
———————————— B R e et it e]
1 (1 ,1) | 2512 | £ t | 20 27 00 00 6 2 6 2 6 2 6 2

21 (0 ,1) | 2512 | £ | £t | £ | (0,1) | | 20 27 00 00 61 61 61 61

in the second sheet block references to lines b, c, d:

itemoffset | ctid | itemlen | nulls | vars | dead | htid | tids | data
———————————— it e e s B ittt
11 (1 ,1) | 25122 | £ | ¢t | £ (1 ,1) | | 20 27 00 00 6 2 6 2 6 2 6 2
20 (2 ,1) | 2512 | £ | | £ (2 ,1) | | 20 27 00 00 6 3 6 3 6 3 6 3
31 (3 ,1) | 2512 | £ |1 | £ (3 ,1) | | 2027 0000 6 4 6 46 4 6 4

The first line (itemoffset =1) in blocks except the most " right " always stores a service value called
"High key". The root is " right " . When inserting a new block into the index structure are updated High
keys and links to adjacent blocks of the same level . High key stores a value greater than those that can
be found in this block. High key is always checked when searching by index. Why ? During the descent
from the previous level to the leaf level, another process could have already split the block to which
they descend and redistributed links to table rows, which means that the sought value is in the block (or
even blocks if there were several splits) to the right of the block to which they descended. If the High
key value of the block to which they went via the rightmost link differs from the HighKey value block
from where you descended, then you need to move to the right along the sheet level and check just in
case whether the desired values are there.

Changing index structure when adding rows

index file, 8Kb blocks

oll 21| 211 3|l 4fl s/l el 7| &
5 lines
3(1.0) 7dinest
(2,1) b 8
(4,1) c o block level 2
- Dloc
metadata gaStrOOt
T V4 4 fast lavial
(L,)b o] (2.1)e = (3.1)c 2
(0 1)a (1_1)b (2,1)d oot 8 (3.0)
(4,1)e block (8) level 2 (7.1) ¢
6 lines
3(L.0)
(2,1) b 34
(4.1) ¢ . internal o links to_ 7(4.0)
(5,1) blocks (3 and 7) (1,0) neighborin (5,1) d
A ! level 1 pn g (6,1) e
\=7 7
/\ HighKey
4 = L Z 4 =] [5)
(1,1)b =] 2.1)e] (3.1)a |« (3.1)d (1,1)b] (2.1)e (] (3.1)d | (4.D)e | (4.1)e
(0. 1)a (1. 1)h (2. 1)c (4,1)e (0. 1)a (1.1)b (2. 1)c (3.1)d (5,1)f
- (6.1)g

{aht

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 176

Changing index structure when adding rows

The index grows from the bottom up. There is not enough space in the leaf block, it is " divided " : an
empty block is added, the rows are redistributed, a reference to the new block is inserted into the upper
block. If there is no space in the upper block, it is " divided " . The index structure is returned by the
pageinspect extension function :

select * from bt multi page stats ('t _idx', 1 , -1);

blkno|typel|live |dead |avg item|page |free |btpo |btpo |btpo |btpo

| | items|items | size| size| size| prev | next|levell|flags

———— fom et ——— Fo——— Fom Fo——— Fo——— +-——— Fo——— Fo——— +-——=

T 111 2] 0 2512 8192 [3116 | 0 | 2 | 0 | 1
2512 8192 |3116 |
1677 18192 |3104
2512 18192 |3116
2512 8192 |3116
2512 8192 | 600
1677 18192 [3104 |

8 | r | 2] 0| 1260 8192 (5620 | 0 | 0 | 2 | 2

btpo prev stores the block number to the left of the current one (blkno) at the same level. Value O
means that there is no block on the left, this block is the leftmost one.

btpo next The block number to the right of the current block. Value O: the current block is the
rightmost.

type block type : r - root ; i - internal ; | - leaf , e - ignored , d - deleted leaf , D - deleted internal

btpo_flags bitmap:

1 - leaf block, 2 - root block, 4 - free block, was removed from the index structure , 8 - metadata
block, 16 - empty block, but in the tree structure (half-dead) . The remaining bits are used during
vacuuming to track changes in the index structure : 256 is the deleted block flag (BTDeletedPageData

)

<o U W N
e e e e T =
W wWwNNWN
oo oo oo
w o s N O R
oo oG
PO OoOoRr o
O PP OR

It can be seen that the block humbers correspond to the order in which the block is added to the index
structure. The root block changes as the number of levels increases (level) .

The index grows from the bottom up. There is not enough space in a leaf block, it is "divided™: an
empty block is added, the rows are redistributed, a reference to the new block is inserted into the block
above. If there is no space in the block above, it is also "divided". Why is the word "divided" used?
Because the rows in the block are redistributed between it and the one added to the index structure.

Example of index growth when inserting rows

8 (3.0)
select blkno blk , type, live items live, (7.1) c
btpo_prev prev , btpo next next, btpo_ level
level from bt multi _page stats ('t _idx',1,-
1); e i
blk | type | live | prev | next | level ;\1 il (5,1) d
——— to———— to——— B +o———— (1,0) (6,1) e
1111211011210 1o 2s (9,1)
2 1112111410 all i A £
HighK
31113101711 | ‘gniey (5
41112121510 T Z T 5 19 L)L
51112141610 (1,1)b = (2.1)c 2| (3.1)d | (4.1)e | (5.1)E [|<| (6
61 112151 9]0 (0 _1)a (1 _1)b (2. 1)c (3.1)d (4 _1)e ,1)g
701131311111 7
8 | r 3101012 8 (3.0) 1)k
9 1 1|1 21 6] 10 | 0 (7.1) c
011131910710 (11,1) e
1174113171071 11 (6
(11 rows) PIDL 7iN
o) 7O7
c = (9
(1,0) (4.0) /1) £
2 €53 I
‘/,/’//' HighKey ‘,,/”/’ HighKey K/,/’/// 2 ~\\\\Ih~\
T Z) 5 19] (6.1)g
(1,1)b = (2.1)c] (3.1)d | 4.1)e | 5.1)E [|<7] (6.1)g ~=1 '(7 1)h
(0. 1)a (1. 1)b (2. 1)c (3.1)d (4 1)e (5 1) f !
(8,1)
Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 177

Example of index growth when inserting rows

The content of the index blocks is shown by the query , an example is given for 9 rows:

select itemoffset o, ctid , itemlen , htid , left(data::text,18) data, chr (
nullif (('0x0'||substring(data from 13 for 2))::integer,0)) c from bt page items
(' t idx ', block number);

o | ctid | itemlen | htid | data | c

e fomm - fom— oo o=
1 | (1,1) | 2512 | | 20 27 00 00 62 62 | b

| (0,1) | 2512 | (0,1) | 20 27 00 00 61 61 | a
———mm—— Fomm Fmmm Fmmm =
11 (2,1) | 2512 | | 20 27 00 00 63 63 | c
2 | (1,1) | 2512 | (1,1) | 20 27 00 00 62 62 | b
e fomm fomm T o=
1] (4.1) | 2512 | | 20 27 00 00 63 63 | ¢
201 (1, 0) [81 |1
3 1 (2,1) | 2512 | | 20 27 00 00 62 62 | b
e fomm e fommm o fom o -
1 | (3.1) | 2512 | | 20 27 00 00 64 64 | d

| (2,1) | 2512 | (2,1) | 20 27 00 00 63 63 | c
———mm—— Fomm fmmm Fmmm ==
1| (4.1) | 2512 | | 20 27 00 00 65 65 | e
2 | (3.1) | 2512 | (3.1) | 20 27 00 00 64 64 | d
e fomm fmm oo o=
11 (5,1) | 2512 | | 20 27 00 00 66 66 | £
2 | (4.1) | 2512 | (4.1) | 20 27 00 00 65 65 | e
e fomm - pomm oo o=
1 | (6,1) | 2512 | | 20 27 00 00 65 65 | e
201 (4.0 I 81 11
3 1 (5,1) | 2512 | | 20 27 00 00 64 64 | d
———mm— Fomm fmmm Fmm =
10 3, 0) 181 11
2 | (7.1) | 2512 | | 20 27 00 00 63 63 | ¢
3 | (11,1)] 2512 | | 20 27 00 00 65 65 | e
e fomm - fomm oo o=
11 (6,1) | 2512 | | 20 27 00 00 67 67 | g
2 | (5,1) | 2512 | (5,1) | 20 27 00 00 66 66 | f
e fomm e fomm Fom o -
1| (6,1) | 2512 | (6,1) | 20 27 00 00 67 67 | g

[(7.1) | 2512 | (7.1) | 20 27 00 00 68 68 | h
3 1 (8,1) | 2512 | (8,1) | 20 27 00 00 69 69 | 1i
e fomm fomm oo o=
10 (6, O) I 81 11
2] (9,1) | 2512 | | 20 27 00 00 66 66 | £
3 | (10,1)] 2512 | | 20 27 00 00 67 67 | g

The structure of the index after its rebuilding

= The HighKey of the parent block must be present in the rightmost lower
block referenced by the parent block. If the value is different, the
process must read the lower blocks to the right of the rightmost one,
since it is likely no longer the right one.

= in the rightmost blocks at their level HighKey is not stored, since there
are no blocks to the right of them and checking is not necessary

= index rebuild command:

postgres=# reindex index t_idx)

(8,1) d
REINDEX N (12.f) o

L
r= N \ +2—+6~
(1, 0)\ g \ 0)
(2 ,1) (5, 0) (11,1)
b) (6,1) e . !
) HighKey) HighKey /\
i] ’/dzrrxg:\\‘ b k/i’)"\\\\\ . N
N ° 7 Al
7.1)h 7.1)h
(1,1)b] (2.1)c j| (3.1)d | (4.1)e || (5.1)f [|<] (6.1)g [() <] (8)1)
(0. 1)a (1. 1)b (2. 1)c .14 (4 Ne (5 1) F 4
(e,1)g 1

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 178

The structure of the index after its rebuilding

Contents of index blocks after rebuilding with the command:

reindex index t_idx ;

The example on the slide is given for 10 rows with values: a,b,c,d,e, f,g,h, 1 .

The red arrows show the HighKey connection . The HighKey value of the upper block must be present
in the rightmost lower block referenced in the upper block. If the value is different from c 4, the process
must read the lower-level blocks to the right of the rightmost one, since it is most likely no longer the
right one.

In the rightmost blocks on their own HighKey level are not stored, since there are no blocks to the right
of them and checking is not necessary.

Index files may include blocks that are excluded from the index structure. When vacuuming, all index
file blocks are read in order from the beginning of the file to the end of each file. Reducing the size of
index files speeds up autovacuum and reduces the number of empty index blocks that autovacuum is
forced to load into the buffer cache.

In intermediate blocks in ctid the reference to the index block is stored, and the second number is
one or zero . If one, then the data field stores the minimum value that is present in the child leaf block. If

zero ctid =(N, 0) ,thenthe data field empty (interpreted as " minus infinity ", i.e. the boundary
is unknown) and this link leads to the leftmost child block.
In the example on the slide the second number is zero ctid : (3, 0) (1, 0) (5, 0) (10, O

) and they have a data field empty.

FILLFACTOR In btree indexes

= for indexes on the column being filled fillfactor =100 should be set in
ascending order

= in case of setting fillfactor =100 the left block when dividing the
rightmost leaf block will be filled to the maximum, the data will be
stored more compactly, the division of the right block will occur less
frequently

= In btree indexes fillfactor is set to the values:
> 90% for sheet blocks
> 70% for non-leaf blocks and it doesn't change
> 96% when splitting any leaf block that is completely filled with duplicates

(same value)

= fillfactor sheet blocks the following is used:
> during index building
> when splitting the rightmost page of both the sheet and intermediate levels

{ahtor

Educational Course "Tantor : Performance tuning of PostgreSQL 16" Tantor Labs LLC © 2025 179

FILLFACTOR in indexes type btree

If, when inserting a row into a table, the rightmost page at a level is divided (the last page of the level),
then the division is not equal, the left page is filled up to fillfactor , and the right one remains almost free.
This is useful for indexes on auto-incrementing columns or filled ones. increasing sequence, since
insertions will always go to the rightmost leaf block and it will be divided. For such indexes, it is worth
setting fillfactor =100 , otherwise the indexes will be larger , space in leaf blocks will be wasted . In case
of setting fillfactor =100 the left block will be filled to the maximum when dividing the rightmost
leaf block, the data will be stored more compactly, and the right block will be divided less frequently.
The intermediate blocks of such indexes will be filled to 70% regardless of the fillfactor value .
However, the intermediate blocks make a small contribution to the index size. For a numeric column (
int2, int4, int8), the intermediate block will fit 286 links at 70% fill, and 407 links at 100%.

This is n